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EXECUTIVE SUMMARY 
 
In many agencies with jurisdiction over extensive road infrastructure, it is common 
practice to select and rectify hazardous locations. Improving hazardous locations may 
arise during safety management activities, during maintenance activities, or as a result of 
political pressures and/or public attention. Commonly a two-stage process is used. In the 
first stage, the past accident history of all sites is reviewed to screen a limited number of 
high risk locations for further examination. In the second stage, the selected sites are 
studied in greater detail to devise cost-effective remedial actions or countermeasures for a 
subset of correctable sites.  
 
Due to limited time and resources, constraints and the extensive number of candidate 
sites typically considered in such endeavors, it is impractical for agencies to examine all 
sites in detail. The current Arizona Local Government Safety  Project (ALGSP)Analysis 
Model, which was developed by Carey (2001) with funding from the Arizona 
Department of Transportation (ADOT), is intended to facilitate conducting these 
procedures by providing an automated method for analysis and evaluation of motor 
vehicle crashes and subsequent remediation of ‘hot spot’ or ‘high risk’ locations. The 
software is user friendly and can save large amounts of time for local jurisdictions and 
governments such as Metropolitan Planning Organizations (MPOs), counties, cities, and 
towns. However, its analytical core is based on the simple ranking of crash statistics, 
where the user is offered choices of crash frequency, crash rate, crash severity, or crash 
cost (severities associated with average costs per crash severity type). Although this 
method has the benefit of straightforwardness, the efficiency of identifying truly high-risk 
sites leaves some room for improvement. This research, funded by ADOT, aims to justify 
and recommend improvements to the analytical algorithms within the ALGSP model, 
thus enhancing its ability to accurately identify high risk sites. 
 
Included in the results of this research are a survey of past and current hot spot 
identification (HSID) approaches; evaluation of HSID methods, and exploration of 
optimum duration of before-period crash data under simulated scenarios; development of 
safety performance functions (SPFs) for various functional road sections within Arizona; 
extended comparisons of alternative HSID methods based on SPFs by using real crash 
data; and recommendations for improving the identification ability of the current ALGSP 
model. These results are divided into the following sections: 
 

• Literature review of HSID methods (chapter II): Through tracing the historical and 
conceptual development of various HSID techniques, the strengths and weaknesses 
associated with alternative approaches are assessed and appropriate directions of 
future research on HSID methods are explored and proposed. A detailed description 
of Bayesian approaches is also provided. 
 

• Experimental design for evaluation of HSID methods and exploration of accident 
history (chapter III): In this experiment, “sites with promise” are known a priori. 
Real intersection crash data from six counties within Arizona are used to simulate 
crash frequency distributions at hypothetical sites. A range of real conditions is 
manipulated to quantify their effects. Various levels of confidences are explored.  
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False positives (labeling a safe site as high risk) and false negatives (labeling a high 
risk site as safe) are compared across the following three methods, say, simple 
ranking method, confidence interval method, and Empirical Bayesian (EB) method. 
Finally, the effect of crash history duration in these approaches is quantified. 
 

• Safety performance functions for Arizona road segments (chapter IV):  The SPFs 
for nine functional classifications of road sections in Arizona are created based on 
the crash data of Year 2000 provided by ADOT. Due to the existence of 
overdispersion of accidents, Negative Binomial models are utilized to develop these 
SPFs. 
 

• Comparison of HSID methods based on real crash data of Arizona road segments 
(chapter V): On the basis of SPFs for Arizona road sections, five tests are 
implemented to evaluate the performances of the EB, accident reduction potential, 
accident frequency, and the accident rate methods. Two levels of confidences are 
explored under each test. In addition, the similarity of identification results of the 
alternative HSID methods is explored as well. 
 

• HSID in current ALGSP model and recommended software changes (chapter VI): 
The algorithms for conducting HSID in the current ALGSP model are first 
reviewed and the software changes are then recommended. These recommend-
ations include incorporating functional classification as an additional selection 
parameter, data interface improvements, accident history requirements, embed-ding 
the relationships between exposure and safety for various roadway functional 
classes, incorporation of the EB techniques to compute the expected crash count, 
incorporation of accident reduction potential as an additional weighting method, 
and incorporation of EB techniques to calculate the expected crash costs. 

 
Based on both real and simulated data, the results in this report show significant 
advantages of the EB methods over other HSID methods across various confidence levels 
and different statistical tests. Specifically, the research found that: 
 

• A higher percentage of truly high risk sites are identified as ‘high risk.’  
• A higher percentage of truly safe sites are identified as ‘safe.’ 
• Overall misclassifications are reduced using a Bayesian approach compared to 

alternative methodologies. 
• The Bayesian approach shows the best site consistency and method consistency 

among the alternative methodologies. 
 
Although it is shown that incorporation of Bayesian techniques into the ALGSP will 
provide model users with more accurate prediction of hot spots, improvements are con-
tingent upon accurate safety performance functions, which are currently unavailable in 
the ALGSP. Safety performance functions—the relationship between traffic volumes, 
road section lengths, and crashes—are provided in Appendix C for various roadway 
functional classifications in the state of Arizona. These safety performance functions 
enable the software enhancements needed to improve the ALGSP and accommodate 
Empirical Bayes’ procedures.  
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CHAPTER I - INTRODUCTION 
 
Hot spot identification is a critical contemporary transportation issue. The Intermodal 
Surface Transportation Efficiency Act (ISTEA) of 1991, along with the subsequent 
Transportation Efficiency Act for the 21st Century (TEA-21), brought HSID squarely into 
transportation planning activities. In particular, ISTEA requires each state to develop a 
work plan outlining strategies to implement Safety Management Systems (NCHRP, 
2003). The objectives outlined in this management system require that several activities 
be undertaken by MPOs and/or DOTs: 
 
1) The development and maintenance of a regional safety database so that safety 

investments can be evaluated regionally and forward in time.  
2) The adoption of a defensible (i.e. state of practice) methodology for identifying safety 

deficiencies within a region.  
3) A maintained and updated record of ‘sites with promise,’ including intersections, 

segments, interchanges, ramps, curves, etc.  
4) A defensible methodology for evaluating the effectiveness of safety countermeasures.  
 
Besides this mandate to spend safety funds wisely, there is professional pressure to con-
duct rigorous analyses and be held accountable for ‘good number crunching.’ Due to both 
public and professional pressures and the import associated with motor vehicle injuries and 
fatalities, transportation safety professionals desire analytical tools to cope with HSID. 
 
As a powerful tool for local governments and jurisdictions, the current ALGSP model can 
be used to facilitate the selection of hazardous roadway locations in local jurisdictions 
and to aid in the evaluation of potential spot treatments of safety hazards. Its 
identification method is to simply rank the crash statistics in descending order and then 
the top ones are selected in terms of the allowed money budget.  Due to a random “up” 
fluctuation in crash counts during the observation period, this simple ranking method is 
always subject to regression-to-the-mean bias, which decreases the identification 
accuracy. By contrast, Bayesian methods have been proposed for obviating this bias and 
have revealed themselves as superior for accurately identifying ‘sites with promise’ in 
considerable literature. However, much of the research was conducted on real crash data 
(where hazardous sites are not truly known) and comparisons across various scenarios 
have not been conducted. In addition, real crash data specific to Arizona regions have not 
been used to examine the performance of Bayesian analyses. By designing a special 
experiment which simulates various scenarios and using the real crash data from Arizona, 
this research effort evaluates and compares alternative HSID methods.  All the results 
show the consistent superiority of Bayesian techniques for accurately identifying ‘sites 
with promise.’ This lays the solid foundation for the future incorporation of Bayesian 
approaches into the current ALGSP model. Moreover, safety performance functions of 
various classifications of road sections within Arizona are also provided in this report to 
facilitate the integration procedure.  
 
This report is divided into five primary sections. In the second section of this report, 
Literature Review of HSID Methods, the historical and conceptual development of HSID 
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procedures is reviewed chronologically, and for the convenience of understanding the 
more complicated computation procedures, the detailed description about two types of 
Bayesian techniques is provided. 
 
In the third section, an experimental approach is taken to evaluate the performance of 
simple ranking, classical confidence intervals, and the EB techniques in terms of percent 
of false negatives and positives. Several practical empirical crash distributions from the 
state of Arizona are selected to represent a realistic range of ‘base’ crash data and several 
degrees of crash heterogeneity are examined in the simulation. The results demonstrate 
that the EB methods in general outperform the other two relatively conventional methods, 
especially in the low heterogeneity situations. In addition, the effect of crash history 
duration employed in the three HSID methods is also explored in this experiment. The 
moving average method is used to smooth the trend of the various duration data and to 
find the “knee” of the curve. Using 3 years of crash history data results in significant 
improvements in error rates for all three methods, and 3 through 6 years make up almost 
90% of all the optimum duration. 
  
The major focus of the fourth section is on developing the safety performances of road 
sections. Since design criteria and level of service vary according to the function of the 
highway facility, the safety performance function is created for each of nine types of road 
sections within Arizona. The data for modeling includes accident number, Annual 
Average Daily Traffic (AADT), and road section length. The graph showing the 
relationship among variables, the model form, and measures of goodness-of-fit are 
provided as well. It is expected that the input of the alternate SPFs would facilitate the 
procedure of incorporation of Bayesian techniques into the future ALGSP. 
  
The fifth section contains a comprehensive comparison of identification performances of 
the EB, accident reduction potential, accident frequency, and the accident rate methods 
using crash data from Arizona and the SPFs developed in the previous section. Five 
evaluation tests including site consistency test, the method consistency test, total ranking 
differences test, false identification test, and false/true Poisson mean differences test are 
conducted. Both top 10% and top 5% locations (in terms of accident frequency) are 
considered as hot spots. The results across the nine types of road sections show the 
consistent advantage associated with the EB method, and disadvantage of the accident 
rate method while conducting HSID. 
 
The final section provides recommended software changes to improve its ability to select 
truly hazardous locations from road network. The information of traffic volume is 
proposed to be incorporated in the software. As one of the factors significantly affecting 
road safety, it should be included in the safety performance function, which is the basis 
for conducting the EB analysis. Both the experimental design results based on the 
simulated data and the results of the evaluation tests based on Arizona crash data support 
the incorporation of Bayesian technique in the software. The accident reduction potential 
method is also recommended to be included as an additional weighting method. Finally, 
the recommendation of length of crash analysis period is provided.   
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CHAPTER II - LITERATURE REVIEW OF HSID METHODS 
 
Identifying ‘sites with promise,’ also known as black spots, hot spots, or high-risk 
locations, has received considerable attention in the literature. This is not surprising, 
since there is public and professional pressure to allocate safety investment resources 
efficiently across the transportation system and to invest in sites that will yield safety 
benefits for relatively modest cost. In addition, US federal legislation requires the 
practice of remediating high risk locations.  
 
It is intended that this identification stage act as an effective sieve that allows sites that do 
not require remedial action to pass through, while retaining sites that require remediation. 
This is difficult to accomplish, however, because an individual sites’ safety performance 
(i.e. number of crashes) varies from year to year as a result of natural variation—causing 
two potential errors—false positives and false negatives. False positives are sites 
identified as needing remediation when in fact they are safe, while false negatives are 
sites identified as being safe when in fact they require remediation.   
 
The following literature review comprehensively examines hot spot identification 
methods. It is intended to support ongoing work for the Arizona Department of 
Transportation aimed at improving the current ALGSP Model. It is the first of several 
steps toward ultimately improving the software that enables jurisdictions in the state of 
Arizona to identify sites for potential improvement, such as road segments, intersections, 
ramps, etc. This literature review is divided into two sections: the historical and 
conceptual development of hot-spot identification methods, and a detailed description of 
Bayesian techniques, the current state of the art. 
 
HOT-SPOT IDENTIFICATION PROBLEM BACKGROUND 
 
Due to the significant importance of identifying sites with promise, a large number of 
techniques have been employed to improve the detection accuracy. The historical and 
conceptual development of such procedures is reviewed chronologically in this section to 
help familiarize you with the hot-spot identification problem background. 
 
The following notation will be useful in the discussions that follow: 
    X = observed accident count for a road section/site and period; 
    λ = expected accident count (E{X}) for the road section/site and period; 
    E{λ} = mean of λ’s for similar road sections/sites; 
    D = length of the road section; 
    Q = number of vehicles passing road section/site during period to which X pertains; 
    R = observed accident rate (e.g., crashes/vehicle-kilometer or crashes/million entering 
vehicles); 
    REB = accident rate estimated by the EB method; 
    R = average value of R for similar road sections and sites; 
    UCLX = upper control limit for observed accident counts (X); 
    UCLR = upper control limit for observed accident rate (R); 
    t = number of years of accident data to be analyzed; 
    α, β = parameters. 
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Perhaps the simplest way to identify sites with promise is by simply ranking them in 
descending order of their accident frequencies and/or accident rates. Although this 
method has the benefit of straightforwardness, the efficiency of identifying truly high-risk 
sites leaves considerable room for improvement. To overcome this deficiency, a 
substantial body of research has been devoted to providing more efficient and justifiable 
site identification techniques. For example, Norden et al. (1956) proposed a method to 
analyze accident data for highway sections based on statistical quality control techniques. 
Using an approximation of the Poisson distribution for crash counts, and 0.5 percent 
probability, they developed the equations for UCLX and UCLR used to identify critical 
thresholds. When X exceeds UCLX (or R exceeds UCLR), a site was identified as deviant 
with regard to safety. This approach drew much attention at that time, and some similar 
methods (with relatively minor differences) based on this procedure were proposed in 
subsequent years.  
 
Researchers then began to ponder the issues of how many years (t) of accident data are 
necessary to conduct a defensible analysis. By finding that a 13-year average could be 
adequately estimated from 3 years of accident counts, May (1964) first provided the 
conclusion, “There is little to be gained by using a longer study period than three years.” 
It is reasonable to use the current data instead of using old data that no longer reflect a 
current situation. However, considering that a sensible choice of t must depend on the 
magnitude of the average that is being estimated and on some knowledge of what makes 
past accident counts obsolete, this influential practice seems somewhat arbitrary. 
 
Crash severity became the next issue of importance regarding HSID methods. Common 
sense suggested that a site with more severe crashes (all else being equal) should receive 
higher priority in remediation efforts. The safety index was first introduced by       
Tamburri and Smith (1970) and later incorporated into the practice of HSID. In essence, 
they said each road type (as examples, rural two-lane roads, urban freeways, etc.) had a 
characteristic mix (distribution) of accident severities among fatal, injury, and property 
damage only (PDO) crashes. On the basis of the accident severity and road type, accident 
costs were used to weight crashes. They also suggested that all crashes be expressed in 
terms of PDO equivalent accidents (for example a certain injury crash may be equivalent 
to 5 PDO crashes). 
 
Deacon et al. (1975) considered the difference between identifying hot spots and sections 
and explored how long analysis sections should be conducted. They also presented an 
analysis of a sensible t, in comparison to that provided earlier by May (1964). Their 
conclusions suggested that a balance is sought between reliability of the crash data 
(longer being more reliable) and the need to detect adverse change quickly (shorter being 
more able to reveal adverse safety changes), and that a single t should be determined on 
this basis. They also recommend 9.5 as the weight for fatal and A-injury crashes, and 3.5 
for B and C crashes when using a safety index. 
 
Laughland et al. (1975) first described the ranking procedure using both the number and 
rate methods. The method proposed identifies hazardous locations when X exceeds some 
predetermined value UCLX and R exceeds UCLR. The claimed advantage of this 
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procedure is that it excludes so-called hazardous locations identified as a result of R being 
as large as a result of low exposure. 
 
Renshaw et al. (1980) argued that questions about the length of sections, duration of 
accident history, amount of traffic, and detection accuracy must all be considered jointly 
and that reliable detection is often not practical. 
 
Hakkert and Mahalel (1978) first proposed that blackspots should be defined as those sites 
whose accident frequency was significantly higher than the expected at some prescribed 
level of significance. This point was then favored by McGuigan (1981; 1982), who put 
forward the concept of potential accident reduction (PAR), such as the difference between 
the observed accident counts and the expected number of similar sites. He stated, with 
some justification, that PAR should be a better basis on which to rank sites than annual 
accident totals (AAT), which tends to identify high flow sites which do not necessarily 
have the potential for accident reduction. This method is similar to the quality control 
method to some extent. The former represents the magnitude of the problem, that is, how 
many accidents can be avoided given the normal situation, and the latter represents how 
large the probability that the site is abnormal by using the given level of confidence. 
 
Estimating E{λ} using a multivariate model was suggested by Mahal et al. (1982). By 
using E{λ} as the mean, they deemed a location as deviant if the probability of observing 
X or more accidents was smaller than some predetermined value. 
 
Flak et al. (1982) recommended that crashes be categorized according to specific road 
conditions (weather, pavement material, etc.) and by accident type (turning, side-swipe, 
rear-end, etc.), and so forth. This concept differed from previous ones in that it seeks to 
identify deviant locations with regards to very specific conditions. Although appealing 
from an experimental design point of view, this concept is likely to produce sample sizes 
too small to detect significant differences for all but the largest of databases.  
 
Hauer and Persaud (1984) proposed a concept of sieve efficiency in which the number of 
sites to be inspected and the expected numbers of correct positives, false positives, and 
false negatives serve as measures of performance. They examined the performance of 
various HSID techniques on the basis of performance measures that are easy to 
understand. They argued that the quality-control approach to HSID does not give the 
analyst clues about how well or how poorly the sieve is working. They also suggested 
that numerical methods are needed to free the procedure from reliance on the assumption 
that λ obeys the gamma distribution. 
 
Regression-to-the-mean (RTM) bias associated with typical methods of site selection has 
been identified in the literature and some research dealing with RTM has been developed. 
Persaud and Hauer (1984) compared and evaluated the performance of an EB and a 
nonparametric method for debiasing before-and-after analyses. The results of several data 
sets show that the Bayesian methods in most cases yield better estimates than the other 
one. Wright et al. (1988) made a survey on the previous research dealing with the RTM 
effect. He examined the validity of assumptions associated with those methods, evaluated 
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the robustness of the results based on the assumptions, and provided some suggestions for 
improving the quality of the results.  
  
Mak et al. (1985) developed a procedure to conduct an automated analysis of hazardous 
locations. The procedure consists of (a) a mainframe computer program to identify and 
rank black-spots, (b) a microcomputer program to identify factors overrepresented in 
accident occurrence at these locations relative to the average for similar highways in the 
area, (c) a multidisciplinary approach to identify accident causative factors and to devise 
appropriate remedial measures, and (d) evaluation of remedial measures actually 
implemented. The procedure is based on accident rate (number of injury and fatal 
accidents per 100 million vehicle miles of travel). 
 
Higle and Witkowski (1988) developed a Bayesian model for HSID using accident rate 
data rather than accident counts, which are shown to have identification criteria 
analogous to those used in the classical identification scheme. The comparisons between 
the Bayesian analysis and classical statistical analyses suggest that there is an appreciable 
difference among the various identification techniques in terms of HSID performance, 
and that some classically based statistical techniques are prone to err in the direction of 
excess false negatives.  
 
Based on data from 145 intersections in Metropolitan Toronto, Hauer et al. (1988) 
provided Bayesian models to estimate the safety of signalized intersections on the basis 
of information about its traffic flow and accident history. For each of the 15 accident 
patterns (categorized by the movement of the vehicles), an equation is given to estimate 
the expected number of accidents and the variance using the relevant traffic flows. When 
data about past accidents are available, estimates based on traffic flow are revised with a 
simple equation. By applying these Bayesian models, one can estimate safety when both 
flows and accident history are given and, on this basis, judge whether an intersection is 
unusually hazardous. This method of estimation is also recommended for accident 
warrants in the Manual on Uniform Traffic Control Devices. 
 
Through a simulation experiment, Higle and Hecht (1989) evaluated and compared 
various techniques for the identification of hazardous locations, based on classically and 
Bayesian statistical analyses respectively, in terms of their ability to identify hazardous 
locations correctly. The results reveal that the two classically based techniques suffer 
from some shortcomings, and the Bayesian method based on accident rate exhibits a 
tendency to perform well, producing lower numbers of both false negative and false 
positive errors.     
 
By 1990 it was generally becoming accepted among academic circles that the Empirical 
Bayes approach to unsafety estimation was superior to previous HSID methods. The 
Bayesian approach generally makes use of two kinds of clues of an entity: its traits (such 
as traffic, geometry, age, or gender) and its historical crash record. It requires information 
about the mean and the variance of the unsafety in a “reference population” of similar 
entities. Obviously, this method suffers from several shortcomings: First, a very large 
reference population is required; second, the choice of reference population is to some 
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extent arbitrary; and third, entities in the reference population usually cannot match the 
traits of the entity for which the unsafety is estimated. Hauer (1992) alleviated these 
shortcomings by offering the multivariate regression method for estimating the mean and 
the variance of unsafety in reference population. By describing its logical foundations 
and illustrating some numerical examples, Hauer shows how the multivariate method 
makes the Empirical Bayes method to unsafety estimation applicable to a wider range of 
circumstances and yields better estimates of unsafety than previous methods. 
 
Persaud (1991) presented a method for estimating the underlying accident potential of 
Ontario road sections using accident and road related data. The comparative results 
indicate that the EB estimates are superior to those based on the accident count or the 
regression predictions by themselves, particularly for sections that might be of interest in 
a program to identify and treat unsafe road locations. 
 
Brown et al. (1992) presented the convergence of HSID by police-reported data, by 
highway inventory, and by community reporting. Weighted injury frequencies per unit 
distance and weighted injury rates per 100 million vehicle-km are presented for all sites 
and for all numbered highway segments. Priority sites are then ranked considering injury 
frequencies and injury rates.    
 
Hauer et al. (1993) explored the probabilistic properties of the process of identifying 
entities, such as drivers or intersections, for some form of remedial action when they 
experience N crashes within D units of time, the N-D “trigger.” On the basis of the 
probability distribution of the “time-to-trigger,” it is concluded that in road safety the 
problem of false positives is severe, and therefore entities identified on the basis of 
accident or conviction counts should be subjected to further safety diagnosis. Moreover, 
they found that the longer the N-D trigger is applied to a population, the less useful it 
becomes. 
 
Tarko et al. (1996) presented a methodology of area-wide safety analyses to detect those 
areas (states, counties, townships, etc.) that should be considered for safety treatment. 
The method is implemented for Indiana at the county level and uses regression models to 
estimate the normal number of crashes in individual counties. The counties are priority 
ranked using the combined criterion including both the above-norm number of cashes and 
the confidence level. This combined criterion helps select counties where the excessive 
number of crashes is not caused solely by the randomness of the process. This application 
differs from previous applications in that the HSID was conducted at the planning or 
county level, instead of at the intersection or road segment level.  
 
Stokes and Mutabazi (1996) traced the evolution of the formulas used in the rate-quality 
control method from their origin in the late 1950s to their present form, and they also 
presented and discussed the derivation of the basic formulas used in the method. It is 
suggested that, contrary to assertions in the literature, the accuracy of the equations used 
in the rate-quality method is not proved by eliminating the normal approximation 
correction factor from the original equations and the need for a correction factor is 
particularly apparent at higher probability levels. 
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On the basis of the review of previous procedures for black-spots identification, Hauer 
(1996) made an attempt to create some order in the thinking and made some suggestions 
to improve identification. In comparison with the stage of identification, he pointed out 
that the stage of site safety diagnosis and remediation is somewhat underdeveloped. 
 
Persaud et al. (1999) put forward a similar concept to potential accident reduction, such 
as potential-for-safety-improvement (PSI). For the sake of correcting for the RTM bias, 
he replaced the observed accident number with the long-term mean of accident counts in 
the PAR previously stated.  
 
Davis and Yang (2001) made use of Hierarchical Bayes methods combined with an 
induced exposure model to identify intersections where the crash risk for a given driver 
subgroup is relatively higher than that for some other groups. They carried out the 
necessary computations using Gibbs sampling, producing point and interval estimates of 
relative crash risk for the specified driver group at each site in a sample. The methods can 
also be extended to identify hazardous locations for a specified accident type. This 
method of HSID requires sophisticated modeling skill and software, and is currently 
beyond the level of most DOT staff expertise.    
 
Kononov et al. (2002) presented the direct diagnostics method to conduct HSID and 
develop appropriate countermeasures. The underlying principle is that a site should be 
identified for further examination if there is overrepresentation of specific accidents 
relative to the similar sites.  
  
With empirical Bayes gradually becoming the standard and staple of professional 
practice, Hauer et al. (2002) presented a tutorial on safety estimation using the EB 
method. This tutorial contains comprehensive illustration of using the EB procedures and 
can be viewed as the bridge between theory and practice for the EB application. 
 
The above mentioned research represents only a small portion of the extensive past and 
current HSID research. In summary, the large body of techniques for HSID generally 
includes simple ranking of accident frequencies and/or accident rates, rate-quality control 
methods, site identification using the notion of a safety index, number-and-rate methods, 
accident pattern recognition method, and various applications of Bayesian approaches on 
both crash frequencies and crash rates. In comparison with other techniques, Bayesian 
techniques have been shown to offer improved ability to identify black-spots by 
accounting for both history and expected crashes for similar sites, which can obviate the 
“regression-to-the-mean” problem that simpler methods fail to correct.  
 
This literature review summary clearly indicates that opportunities exist for possible 
enhancements leading to improved HSID within the recently released ALGSP model, 
which currently performs a simple ranking based on accident frequencies. However, as 
one might expect, the incorporation of Bayesian methods will increase the data collection 
burden: additional information about site crash histories and reference populations will 
need to be collected. The following section is devoted to describing the Bayesian 
techniques in greater detail.  
 



 11

BAYESIAN TECHNIQUES TO IDENTIFY HAZARDOUS LOCATIONS 
 
An underlying characteristic of crash occurrence is the random fluctuation from year to 
year of crash counts under constant and unchanging traffic, weather, and roadside 
conditions (which of course in reality does not occur). This characteristic significantly 
reduces the ability to detect truly hazardous locations in the sense that a crash site may 
appear to represent a relatively high risk in a given year when in fact the site’s 
underlying, inherent risk level is average or low (Hauer, 1997). A site that reveals a high 
observed risk in one year is on average followed by a crash count in the subsequent year 
that is closer to the mean—a phenomenon known as regression to the mean. However, it 
was shown in the previous section that Bayesian approaches, by utilizing two kinds of 
clues of an entity (its traits and its historical accident record), involve corrections for 
RTM and can improve significantly the efficiency of site identification. Incorporation of 
such techniques into the ALGSP model will offer improvements in the performance of 
HSID. Unfortunately, in contrast to other approaches, which are relatively 
straightforward, the Bayesian techniques require a greater quantity of information 
associated with locations inspected and also involve relatively more complicated 
computations – albeit trivial for a computer.  
 
Noting that the large portion of this research is to test the performances of various HSID 
methods (including the somewhat typical methods and Bayesian techniques), this section 
describes in detail the analytical aspects of various Bayesian techniques generally accept-
ed as ‘state of the art.’ The research reviews are divided into two groups: Bayesian tech-
niques based on accident frequencies and Bayesian techniques based on accident rates. 
 

Bayesian Techniques Based on Accident Frequencies 
 
To alleviate the RTM bias associated with other site identification techniques, Hauer et 
al. (1984; 1988; 1992) discussed numerous aspects of HSID to derive what is known as 
the EB method. EB methods differ technically from Bayes’ methods in that the former 
relies on empirical data as “subjective” information while the latter relies on truly 
subjective information (e.g. expert opinions, judgment, etc.).  
 
The EB method rests on the following logic. Two assumptions are first needed, which 
can be traced back to those of Morin (1967) and Norden et al. (1956): 
 

Assumption 1: At one given location, accident occurrence obeys the Poisson 
probability law. That is, λxP denotes the probability of recording x accidents on a 

site where their expected number is λ, where !/ xexP x λλλ −= .                            (1)                                 
Assumption 2: The probability distribution of the λ of the population of sites is 
gamma distributed, where g (λ) is denoted as the gamma probability density function. 
 

Estimation of the long term safety of an entity is obtained through using both kinds of 
clues, that is, the traits such as gender, age, traffic, or geometry of an entity and the 
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historical accident record of the entity. If the count of crashes (x) obeys the Poisson 
probability law and the distribution of the λ’s in the reference population is approximated 
by a Gamma probability density function, a good estimator of the λ for a specific entity 
is: 

{ } ( ) ,1 xE αλα −+  with { } { } { }[ ]./ λλλα VAREE +=                                                         (2) 
 
From the above equation, we know estimates of E {λ} and VAR {λ} which pertain to the 
λ’s of the reference population are needed. There are two methods to estimate the E {λ} 
and VAR {λ}. One of them is the method of sample moments, the other is the 
multivariate regression method. 
 
To describe the method of sample moments, let us first consider a reference population of 
n entities of which n(x) entities have recorded X=0, 1, 2,… accidents during a specified 
period.  With this notation, the sample mean and the sample variance are, respectively: 

∑ ∑= )(/)( xnxxnµ                                                                                                     (3) 

( )∑ ∑−= )(/)]([ 22 xnxnxs µ                                                                                        (4) 
In the method of sample moments, the estimators of E {λ} and VAR {λ} are equal to µ 
and s2- µ respectively. The larger is the reference population. These estimates are more 
accurate.  
 
The primary attraction of the method is that its validity rests on a single assumption: that 
if λi remained constant, the occurrence of accidents would be well described by the 
Poisson probability law. However, there remain two practical difficulties: (1) It is rare 
that a sufficiently large data set can be found to allow for adequately accurate estimation 
of E {λ} and VAR {λ}; (2) Even with very large data sets, one cannot find adequate 
reference populations when entities are described by several traits (e.g. geometric 
conditions, etc.). In order to obviate these difficulties, Hauer (1992) provided the 
multivariate regression method. With this correction, a multivariate model is fitted to 
accident data to estimate the E {λ} as a function of independent variables, and the 
residuals (i.e., the difference between an accident count on some specific entity that 
served as “datum” for model fitting and the estimate E {λ} calculated from the fitted 
model equation) are viewed as coming from a family of compound Poisson distributions: 
   { } { } { }λλ EVARxVAR +=                                                                                             (5) 
The E {λ} of the reference population is estimated using the model equation; VAR{x} is 
estimated using the squared residuals. Therefore, based on equation (5), the difference 
[squared residual – estimate of E {λ}] can be used to estimate VAR {λ} for the imaginary 
reference population to which this datum point belongs. 
 
As mentioned previously, it is easy to note that the primary difference between the 
method of sample moments and multivariate regression method is that the estimates of E 
{λ} and VAR {λ} are obtained using different analytical procedures. The method of 
sample moments is straightforward, while the latter one yields more precise results.  
Once the estimates of E {λ} and VAR {λ} are obtained, the expected safety of an entity is 
obtained using Equation 2. However, the truly hazardous locations cannot be screened 
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based solely on the long term safety associated with each entity, a model of the entire 
distribution function of Xλ is required.  
 
On the basis of the assumptions stated previously, the probability that a site selected 
randomly has x accidents is approximated by the negative binomial (NB) probability 
distribution. Thus, the parameters of g (λ) are estimated using EB logic according to the 
following sequence of steps:  
 
Step 1: The sample mean and variance is computed across sites. The notation n(x) is used 
to denote the number of sites that had x crashes. The estimated mean and variance are 
computed using: 

∑ ∑= )(/)( xnxxnµ                                                                                              (6) 

( )∑ ∑−= )(/)]([ 22 xnxnxs µ                                                                                 (7) 
 
Step 2: The EB weighting parameters α and β are then obtained using: 

)/( 2 µµα −= s                                                                                                    (8) 
αµβ *=                                                                                                                    (9) 

 
Step 3: With the two weighting parameters obtained, the parameters of the gamma 
distribution are obtained such that: 

)(/)( 1 βλαλ αλββ Γ= −− eg  .                                                                                (10) 
 
The subpopulation of sites that had x accidents also follows a gamma probability 
distribution and its gamma probability density function is given by: 

)(/)1()( )1(1 xexg xx +Γ+= +−−++ βλαλ λαββ .                                                     (11) 
 
With the probability density functions defined, the selection of hazardous locations is 
now straightforward. Suppose that λ* is the “acceptable” upper limit of accident counts, 
then a site i is identified as hazardous if the probability that λ exceeds λ* is relatively 
small. Specifically, if: 
       ( )*P xλ λ δ> >               (12) 
Where δ is the tolerance level that is contingent upon the choice of safety specialists (i.e. 
level of acceptable risk) and takes into account conditions in the local jurisdiction, then 
site i is identified as a truly hazardous location. 

Bayesian Techniques Based on Accident Rates 
 
In contrast to earlier papers regarding EB techniques, which were concerned with 
predicting the number of crashes that will occur at a particular location, Higle and 
Witkowski (1988) investigated using Bayesian analysis of crashes for the identification 
of hazardous locations based on accident rates and not frequencies. It should be noted 
that use of rates has been strongly discouraged by some researchers, and a growing body 
of literature discourages the use of rates (Hauer, 1997). Due to the similar assumptions 
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and procedures, the research can be viewed as a complement to the previous research 
relying on EB approaches. Using empirical comparisons of performance between 
Bayesian and classical statistical analyses, Higle et al. found that there is an appreciable 
difference among the various identification techniques, and that some classically based 
statistical techniques may be prone to err in the direction of excessive false negatives. 
 
Higle and Witkowski divided the Bayesian analysis into two steps. In the first step, crash 
histories are aggregated across a number of sites to get a gross estimation of the 
probability distribution of the accident rates across the region. In the second step, the 
regional distribution and the accident history at a particular site are used to obtain a 
refined estimation of the probability distribution associated with the accident rate at that 
particular site. 
 
In performing the analysis, Higle and Witkowski made two assumptions that are similar 
to those made by previous researchers: 
Assumption 1: At any given location, when the accident rate is known (i.e., if RRi =~ , 

note that iR~ is treated as a random variable), the actual number of accidents follows a 
Poisson distribution with expected value iDQR )( . That is: 

} ( )
iDQR

X
i

iii e
X

DQR
DQRRXXP )(

!
)(

)(~{ −===                                                            (13) 

Assumption 2: The probability distribution of the regional accident rate, fR(R), is the 
gamma distribution. That is:  

   ( )
R

R eRRf βα
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α
β −−

Γ
= 1)(                                                                                                                                                 (14) 

 
Higle and Witkowski recommended that for each computation, it may be preferable to 
use the MME (method of moments estimates) values rather than the MLE (maximum 
likelihood estimates) values of α and β. Within the framework of Bayesian analysis, the 
site-specific parameters are: ii X+= αα , ii DQ)(+= ββ . Based on αi and βi, the site-
specific probability density functions were then obtained. The steps to identify the truly 
hazardous locations are shown as follows: 
 
Step 1: Estimate the sample mean and variance of the observed accident rates of the 
population of locations:  
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Step 2: Estimate parameters α and β, where: 
     2/ sµβ =                                                                                                                    (17)        
     βµα *=                                                                                                                    (18) 
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With the two parameters, 

( )
R

R eRRf βα
α
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Γ
= 1)(                                                                                               (19) 

Step 3: Obtain iii DQXRf )(, . 
The subpopulation of sites that had X accidents also follows gamma distribution and its 
gamma probability density function is as follows: 
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)(, .                                                                          (20) 

Where: ii X+= αα                          (21) 
      ii DQ)(+= ββ                                                                                                     (22) 

 
With these probability density functions, the selection of hazardous locations is now 
straightforward. Suppose that λ* is the “acceptable” upper limit accident counts, then a 
site i can be deemed as hazardous if the probability that λ exceeds λ* is relatively 
significant. Say, if: 
 

( ) δλλ >> xP * ,                                                                                                              (23) 
 
Where δ is the tolerance level which is contingent upon the choice of safety specialists 
and the actual situation of local jurisdiction. Sites above the critical threshold are then 
identified as truly hazardous locations. 
 
To summarize, Bayesian techniques, by accounting for both crash history and expected 
crashes for similar sites, have been shown to offer improved ability to identify truly 
hazardous locations. The next section quantifies the differences between Bayesian 
techniques and other typical approaches. 
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CHAPTER III - EXPERIMENT DESIGN FOR EVALUATION OF 
HSID METHODS AND EXPLORATION OF ACCIDENT HISTORY 

 
On the basis of the previous literature review for HSID methods, Bayesian methods 
revealed themselves as superior for accurately identifying sites with promise. However, 
much of the research was conducted on real crash data (where hazardous sites are not 
truly known) and comparisons across various Bayesian methods have not been 
conducted. This chapter is focused on examining the performances of the EB and 
alternative typical methods within various environments and exploring the best duration 
of accident history, which causes minimum false identifications.  
  
The chapter is divided into sections as follows. Section 1, “Experiment for Evaluating 
HSID Method Performance,” discusses the steps of an experiment designed to evaluate 
the performance of HSID methods.  Section 2, “Experiment for Optimizing Duration of 
Crash History”  presents the steps with regard to the optimum duration of before-period 
crash data.  Both real data and simulated crash data are utilized in the experiments. The 
real data were obtained from current ALGSP users in Arizona. Simulated data correspond 
with a designed experiment that varies such as degree (or percentage) of difference 
between “correctable” and “average” sites, variability in the data, and different crash 
distributions. The final section provides the conclusions and recommendations that arise 
from the two experiments performed to evaluated HSID methods for use in the ALGSP, 
and translate the analytical results into practical recommendations.  
 

EXPERIMENT FOR EVALUATING HSID METHOD PERFORMANCE 
 
The main objective of this first experiment is to quantify and assess the predictive 
performance of various HSID methods, such as the simple ranking method, the method 
based on classical statistical confidence intervals, and the EB method, in order to identify 
the best one for inclusion in the ALGSP model. Of course there are many aspects of the 
simulation experiment that desire careful attention, such as sample sizes, nature of crash 
data, reliability of tests, etc. Prior to describing the detailed aspects of the experiment, 
HSID methods are first reviewed.  

Hot Spot Identification Methods 
 
A site (series of sites, etc.) may experience relatively high numbers of crashes due to: 1) 
an underlying safety problem; or 2) a random “up” fluctuation in crash counts during the 
observation period. Simply observing unusually high crash counts does not indicate 
which of the two conditions prevails at the site. It is possible to articulate the objective of 
HSID as follows:  
 

The objective of hot spot identification is to identify transportation system 
locations (road segments, intersections, interchanges, ramps, etc.) that 
possess underlying correctable safety problems, and whose effect will be 
revealed through elevated crash frequencies relative to similar locations.   
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Two aspects of the previous statement are noteworthy. First, it is possible to have truly 
unsafe sites that do not reveal elevated crash frequencies—these are termed ‘false 
negatives.’ It is also possible to have elevated crash frequencies, which do not result from 
underlying safety problems—these are termed ‘false positives.’ False positives, if acted 
upon, lead to investment of public funds with few safety benefits. False negatives lead to 
missed opportunities for effective safety investments. As one might expect, correct 
determinations include identifying a safe site as “safe” and an unsafe site as “high risk.” 
When considering the seriousness of errors (false positives and false negatives) with 
respect to safety management, one generally concludes that false negatives are the least 
desirable result, since a jurisdiction will fail to make wise investments and reduce 
fatalities, injuries (serious and minor), and property damage crashes.  
 
For evaluation purposes, an HSID method is sought that produces the smallest proportion 
of false negatives and false positives.  Hence, the percentages of false negatives, false 
positives, and overall misidentifications (false positives plus false negatives) are used to 
compare the performance of three commonly implemented HSID methods: 1) simple 
ranking of sites; 2) classically based confidence intervals; and 3) the EB methods. These 
three methods are now described.  
 
The simple ranking method (denoted SR in experiments) is the most straightforward 
HSID method. Applying this method, a set of locations (e.g. all 4-lane signalized 
intersections in a jurisdiction) is ranked in descending order of crash frequencies (or 
counts, X), and then the top sites are identified as high-risk locations for further 
inspections. Typically, resources are invested to improve correctable sites from the top 
down until allocated funds are expended. This method, for example, is one analysis 
option available in the current version of the ALGSP model. 
 
A second method for HSID is based on classical statistical confidence intervals (denoted 
CI in experiments) (1975). Location i is identified as unsafe if the observed accident 
count Xi exceeds the observed average of counts of comparison (similar) locations, µ, 
with level of confidence equal to δ, that is, Xi > µ+KδS, where S is denoted as the 
standard deviation of the comparison locations, and Kδ  is the corresponding critical 
values. In practice δ is typically 0.90, 0.95, or 0.99, and depends upon the actual situation 
and considerations such as the number of sites, amount of safety investment resources, 
etc. These values serve as approximations, since they are borrowed from the normal 
distribution function and thus have no special meaning in terms of the distribution of true 
accident counts, which typically follow Poisson or negative binomial distributions. This 
method is commonly used in the sense that it is inferred from the classical statistics and 
can be performed conveniently.  
 
Critical in the SR and CI methods is the notion of ‘comparison sites.’ Comparison sites 
are used to obtain an estimate of ‘expected crashes’ for similar sites. When sites are 
ranked using simple ranking, it is assumed that sites that are being ranked with similar 
geometric and traffic conditions. Geometrics and traffic play a significant role in crash 
potential and thus must be treated carefully. Often jurisdictions will group to the extent 
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possible ‘similar’ sites together in the ranking; however, it is often the case that sites with 
different geometric and traffic conditions (i.e. exposure) are compared in the ranking 
method. In the confidence interval method, it is assumed that the group or set of 
comparison sites are similar to the site being compared. Critical to the outcome of any 
HSID method is the level of sophistication employed to identify comparison sites.   
 
For the EB  technique, the former section has given a detailed description. It is 
noteworthy that only the EB based on accident counts would be used herein. Equation 24 
is followed to compute the long-term accidents of each site: 
 { } ( ) ,1 ii xE αλαλ −+=  with { } { } { }[ ]./ λλλα VAREE +=                                                 (24)          
The weight parameter α is obtained by using the method of sample moments in which 
the estimators of E{λ} and VAR{λ} are equal to µ and s2 respectively (µ denotes the 
sample mean and s2 denotes the sample variance). From the above expressions, it is 
known that the second of the two clues, crash history, significantly affects the estimate of 
λ, since longer crash histories tend to be more stable (in crashes per year) than shorter 
crash histories. Thus, different historical accident records yield different estimators of     
E{λ} and VAR{λ}, and subsequently different identification error rates (false positives 
and false negatives). Similarly, these different identification error rates are also supposed 
to be obtained under simple ranking and confidence analysis methods when utilizing 
various historical accident records. Because of its importance, the optimum crash history 
is examined in an experiment described in chapter 2 of this report.   
 

Ground Rules for Simulation Experiment  
 
To accomplish the evaluation of HSID methods, a simulation experiment was designed to 
test a variety of conditions.  The simulation experiment consists of the following specific 
steps: 

 
1) Generate mean crash frequencies from real data. Crash datasets from Arizona (and 

users of the ALGSP) which represent a range of in-situ crash conditions (i.e., 
intersections, road segments, etc.) are first obtained. These data are used to determine 
various shapes of distributions of crash means (λ’s).  Gamma distributions are fit to 
the observed data to reflect heterogeneity in site crash means. These gamma 
distributed means are meant to reflect TRUTH, that is, the true state of underlying 
safety at various locations on a transportation network (note that in practice we do not 
know TRUTH—and herein lies the power of simulation). The gamma distributed 
means are denoted true Poisson means (TPMs), and represent the means of crashes 
across sites.  

2) From TPMs, generate random Poisson samples. Thirty independent random numbers 
for each simulated site are generated. For each of the 1000 sites, the TPM is used to 
generate 30 crash counts that represent OBSERVED data for 30 different observation 
periods, which are assumed to represent years in the analysis.  
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3) Evaluate HSID performance. By knowing the true state of safety for sites (the TPMs), 
and having observed data (the randomly generated Poisson numbers), the 
performance of HSID methods can be tested. The following steps are used to set up 
the evaluation: 
a) SR, CI, and EB are applied in separate simulation runs to rank sites for 

improvement. These are applied by columns (a single observation period, which 
represents what an analyst might see in reality). 

b) For the Bayesian runs, it is assumed that rows (data across observation periods for 
the same site) can also be used to represent the comparison group in order to 
calculate E(x) and VAR(x). This implies that the analyst has accommodated for 
covariates and is able to estimate an expected value for a site that accounts for 
things such as exposure, geometrics, etc.  

c) For the various hot spot thresholds, false positives, false negatives, and total 
misidentifications in percent are computed. The percent of false positives will 
always be larger than the percent of false negatives since the latter represent 
hazardous sites that get identified as non-hazardous, which is much larger 
candidate pool of sites than hazardous sites. Recall that false positives are safe 
sites that are identified as hazardous, a relatively small pool of sites.   

4) Evaluate effect of length of history. In the SR, CI, and EB methods the analyst must 
decide how long a history to use for calculations. In this experiment the effect of 
various accident histories (1 year until 10 years of data) on performance are evaluated 
based on the corresponding identification rate.   

5) Make practical recommendations. The results of the previous steps are discussed and 
translated into practical recommendations for improving the ALGSP software.  

 
Various aspects of the simulation experiment previously listed need to be discussed, as 
the quality and design of the simulated data directly impacts the quality and 
generalizability of the analysis results.  
 

Generating Mean Crash Frequencies from Real Data 
 
To support the development of simulated crash data, 6 years (January 1995 through 
December 2000) of crash counts from intersections in Apache, Gila, Graham, La Paz, 
Pima, and Santa Cruz counties in the state of Arizona are used. These data and their 
corresponding cumulative distributions are shown in Appendix A. Three types of 
characteristically different underlying cumulative distributions of TPMs were observed in 
the Arizona crash data: an exponential shape (denoted E), a linear shape (denoted L), and 
an s-shape (denoted S). In addition, two levels of heterogeneity in crash counts were 
observed: low heterogeneity (denoted 1) where the range in observed crash counts is less 
than 20 crashes, and high heterogeneity (denoted 2) where the range is in excess of 50 
crashes.  
 
Recall that the empirical distributions will be used to generate TRUTH, or the means of 
Poisson counts of sites with varying underlying means. In this simulation study these are 
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denoted as TPMs. Since the data represent the true underlying safety of a site, crash 
counts are Poisson distributed at an individual site, and the statistic is the mean.  
 
The cumulative distributions used to represent the TPMs are labeled as E1, E2, L1, L2, 
S1, and S2, respectively. For example, E2 represents an exponential shaped distribution 
with high heterogeneity in TPMs. These six data sets were selected from various 
jurisdictions within Arizona to try to represent the range of underlying characteristics 
related to true accident count distributions, with the intent of making the results gained 
from this experiment applicable across a variety of typical situations.  
 
As stated previously, the observed data are used to inform the simulation of the TPMs. In 
this experiment three reasonable assumptions are required to establish the foundation for 
a successful simulation of crash data: 
 

Assumption 1: The empirical cumulative distributions shown in Figures 12 
through 17 (see Appendix A) represent the TPMs of the underlying crash 
process—thus the true safety of all sites in the collection of sites is known. 
These data in reality are unknowable, since it is not known a priori which 
sites are “hazardous.”  
Assumption 2: Theoretical distribution of these TPMs of the population of 
sites follows gamma distribution, and the probability that a site selected 
randomly has a given number of accidents is approximated by the negative 
binomial distribution. 
Assumption 3: The TPMs provide the basis for generating observed crash 
count data. Thus, for example, the median ranked site in Figure 12 (E1) 
that has an underlying Poisson mean of around six crashes (per 
observation period) is used to randomly generate a crash outcome, which 
could be 0, 1, 2, 3, ….etc. in any given observation period.   

 
The result of assumptions 1 and 2 is that for each simulated site the underlying TPM 
(expected crash count) is known, which is then used to randomly generate the observed 
crash count.  
 
Generation of Random Poisson Samples from TPMs 
 
The empirical cumulative TPMs shown in Figures 12~17 (see Appendix A) represent the 
data required to meet Assumption 1 discussed previously. Using these data, observed 
crash counts are generated to represent observed data for a given observation period. 
However, due to the relatively small observed sample sizes (less than 200 sites in all six 
datasets) and the corresponding dispersion of crash counts, no sites would be identified as 
hazardous in some cases when using the three HSID methods stated previously. For 
example, if the top 1% of sites are identified as high risk (δ = 0.99), all the sites in the 
datasets labeled as L1, S1, and L2 would be identified as safe when utilizing the classical 
confidence interval method and Bayesian method, thus leading to zero false negatives in 
these scenarios and damaging the regulars of results to some degree.  
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To solve this problem and provide sufficient sample sizes for statistical comparisons, 
theoretical distributions of TPMs are fitted to the six datasets. Then the sample sizes are 
enlarged by randomly generating the required number of sites under these gamma 
distributions (site specific crash means are gamma distributed whereas within-site crashes 
are Poisson distributed). In this experiment, 1,000 sites are simulated. Fitting specific 
gamma distributions to a given sequence of data can be implemented through various 
software packages, such as MINITAB, SAS 8.1 (1998), and Arena 7.0 ( Kelton, 2003). 
Herein the Arena 7.0 is employed. Within the context of Arena, the curve fitting is based 
on the use of maximum likelihood estimators, and the quality of a curve fit is based 
primarily on the square error criterion. The fitting of probability density function (PDF) 
of a gamma distribution to the observed data is based on the histogram plot of these data. 
The distribution summary report also presents the expression of given probability density 
function, the corresponding p-value of Chi Square test and square error, etc. Figure 1 
shows one example of fitting gamma distribution to the dataset. To show the fitting 
effect, the corresponding theoretical cumulative distribution function (CDF) is also 
plotted in the same graph of empirical CDF (Figure 2 shows the distribution of dataset 
E1). The figures show that the gamma distribution fits well to the observed data. The 
summary of all six fittings is shown in Table 1.  
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Distribution Summary 
Distribution: Gamma         
Expression: 3.5 + GAMM (13.4, 2.27) 
Square Error: 0.020052 
Chi Square Test Results 
  Number of intervals = 8 
  Degrees of freedom  = 5 
  Test Statistic      = 8.2 
  Corresponding p-value = 0.16 
Data Summary 
Number of Data Points = 94 
Min Data Value        = 4 
Max Data Value        = 70 
Sample Mean           = 33.8 
Sample Std Dev        = 16.7 
Histogram Summary 
Histogram Range     = 3.5 to 70.5 
Number of Intervals = 67 
 

Figure 1: Observed and Fitted PDF of E1 Crash Data and Fit Summary Statistics 
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Figure 2: Fitted and Empirical CDF of E1 
 
 

Table 1: Summary of Gamma Fittings of Six Datasets 
 

Data set Fitting Expression Square Error Test Statistic p-value 
E1 0.5+Gamm(3.79,1.75) 0.022344 26 <0.005 
E2 1.5+Gamm(15.9,1.7) 0.011836 13.4 0.0385 
L1 0.5+Gamm(4.31,1.71) 0.038173 11.1 0.0119 
L2 3.5+Gamm(13.4,2.27) 0.020052 8.2 0.16 
S1 0.5+Gamm(2,4.3) 0.014903 33.5 <0.005 
S2 0.5+Gamm(9.06,2.57) 0.013211 23 <0.005 

Note: E—Exponential shape; L—Linear shape; S—Sigmoidal shape; 1— Low heterogeneity of crash 
counts; 2— High heterogeneity of crash counts. 
 
After TPMs have been simulated (the crash means across sites which reflect the true and 
typically unknown state of nature), the next step is to generate observed crash counts for 
the sites. These counts will represent the observed crash counts across observation 
periods for a particular site (where its true safety is known).  It is well-established that 
crash counts fluctuate across observation periods as a result of the randomness inherent in 
the underlying crash process and is well approximated by a Poisson process. In other 
words, the count of crashes changes from one period to another even if driver 
demography, traffic flow, road, weather, and the like remained unchanged. To represent 
this natural fluctuation, a random sample of 30 observation periods (which could be 
months, years, etc.) associated with each location is randomly generated using a random 
number generator and underlying TPMs defined by the fitted distributions in Figure 
12~17 (see Appendix A). A small snapshot of the data obtained from this simulation is 
shown in Table 2.  
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Table 2: Simulated Data for 30 Sites and 16 Observation Periods 

 
PERIOD SITE TPM 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 4 5 1 4 1 2 7 4 3 4 4 2 1 1 5 5 6 
2 8 5 9 8 6 8 4 9 9 5 4 8 8 9 9 13 8 
3 8 12 7 10 5 5 7 11 8 8 8 11 6 6 7 8 7 
4 9 12 9 10 16 8 12 7 9 11 8 10 8 16 11 6 8 
5 9 10 13 12 8 9 6 12 10 9 9 4 5 12 11 11 4 
6 10 15 4 6 10 4 17 6 11 12 7 10 10 15 6 17 10 
7 10 8 5 10 8 13 10 11 7 12 10 8 9 9 6 9 10 
8 10 7 8 11 14 10 12 7 11 12 11 12 13 7 7 7 11 
9 12 13 17 8 14 12 10 16 10 7 15 17 9 11 15 14 15 
10 12 10 9 13 13 6 12 18 11 15 12 12 12 13 12 13 9 
11 12 9 10 10 14 15 12 7 14 6 12 11 19 9 17 10 18 
12 12 11 14 14 9 16 7 15 3 10 13 9 11 7 2 12 14 
13 12 15 15 16 13 8 12 13 16 16 12 15 11 15 12 14 9 
14 12 14 10 10 11 15 15 12 13 14 15 13 14 11 13 17 19 
15 12 11 12 12 8 12 13 12 7 9 11 9 9 9 12 4 9 
16 13 8 17 13 8 12 11 17 15 16 13 12 15 16 12 14 19 
17 13 9 13 16 16 11 8 6 18 12 8 7 11 12 12 17 15 
18 13 10 18 15 16 10 15 10 16 17 10 6 8 8 10 13 6 
19 13 14 13 17 11 6 11 18 15 11 17 16 19 13 11 15 14 
20 13 7 4 13 11 12 10 17 19 6 7 12 15 7 15 14 12 
21 14 16 17 12 18 13 17 12 11 7 13 15 10 18 14 17 19 
22 15 15 18 21 15 15 14 13 21 14 13 20 13 12 19 16 16 
23 15 11 13 16 12 12 16 10 16 19 20 21 16 13 19 11 16 
24 15 9 16 16 11 14 12 15 18 11 16 14 29 11 12 19 14 
25 16 18 12 15 9 19 18 14 11 19 15 18 14 18 18 14 20 
26 17 22 10 19 12 15 19 18 10 11 17 20 16 15 11 10 15 
27 18 14 21 9 19 16 17 19 18 18 14 16 28 19 18 19 10 
28 18 8 20 19 5 16 18 20 28 16 17 19 14 15 14 18 15 
29 19 26 19 18 21 17 29 12 22 25 15 23 11 19 20 15 24 
30 20 22 18 23 21 23 19 26 22 16 20 19 15 14 19 13 15 
Note: SITE=number of site, e.g. intersection, road segment, etc.; TPM=true underlying safety of site or 
Poisson mean; SIMULATED DATA=observed crash count in observation period; Shaded cells represent 
‘truly hazardous’ locations (sites 19 and 20).   
 
Table 2 shows 16 simulated observations periods for 30 sites with TPMs given in the 
second column from the left. For example, the two sites with 19 or more crashes per 
observation period may be identified a priori as hazardous since the TPMs reflect the true 
underlying state of nature. The two sites in the shaded cells are hot spots whereas the 18 
sites above the shaded area are ‘safe.’ In any given observation period such as 
observation period 5, the observed number of truly hazardous sites that recorded 19 or 
more crashes was two sites out of 20, where one was a truly hazardous site (site 20) and 
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one was not (site 16, a false positive). In observation period 5 there was also a false 
negative, since truly hazardous site 19 revealed only 17 crashes.   
 
So, by simulating large numbers of observation periods (30) characterized by different 
TPM cumulative distribution shapes, a large number of sites (1000) for each of the six 
observed crash distributions, the number of false negatives and positives (the sum total of 
the two is called false identifications) can be counted as a consequence of the three 
different HSID methods described previously.  
 
Performance Evaluation Results for HSID Methods 
 
Given knowledge of three HSID methods, the ground rules for the simulation experiment, 
and an explanation of how data were simulated, the three HSID methods were applied to 
the simulated data to evaluate their relative effectiveness at identifying hot spots.  
 
Establishing fair comparisons among the different HSID methods is paramount. In order 
to objectively compare the performances of the HSID methods described previously, 
equivalent evaluation criteria must be used. One consideration in this regard is the use of 
δ, or cutoff level used to establish hazardous locations. Three values of δ are employed in 
the evaluations, 0.90, 0.95, and 0.99 corresponding to the top 10%, 5%, and 1% of all 
sites respectively. In practice, this corresponds with the amount of resources available for 
remediation and the number of similar sites being compared. For example, a local 
government wanting to remediate hot spot signalized intersections (where 75 such 
intersections exist) might fix 7 intersections, or 10% (δ = 0.90).   
      
All parameters of the simulation experiment have now been described. They include 
shapes of the TPMs (E, S, and L), levels of heterogeneity in the TPMs (1 and 2), and 
levels of δ (0.90, 0.95, and 0.99). Three HSID methods are assessed, SR, CI, and EB. 
Evaluation criteria include percent of false positives (FP), percent of false negatives (FN), 
and sum total percent of FP and FN, called false identifications (FI). For all of the 
simulations, samples sizes were 1,000 for TPMs and 30 for observation periods.  
 
To conduct the simulation experiment with these parameters, the following steps were 
undertaken:  
 
1. All the TPM cumulative distributions are divided into truly hazardous locations and 

non-hazardous locations, using thresholds of 0.90, 0.95, and 0.99 to represent 
different data separation thresholds. This step results in three “critical” crash count 
threshold values, CC0.90, CC0.95, and CC0.99 for each combination of cumulative TPM 
shape and heterogeneity level. These values represent differentiation values to 
distinguish between known truly hazardous locations and safe locations.  

 
2. The three different HSID methods are used to identify hot spots using the simulated 

data. Specifically, the SR method simply ranks observed frequencies as shown in 
Table 2, the CI method uses the entire sample mean and standard deviation to 
determine confidence intervals for ranking, and the EB method uses a weighted 
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average of crash history and observed frequency using Gamma distribution 
parameters to rank sites.  

 
3. Simulated crash data are then compared to the values CC0.90, CC0.95, and CC0.99. For 

the truly hazardous sites, if the randomly generated crash counts are lower than the 
values CC0.90, CC0.95, and CC0.99, then FNs are produced. Truly hazardous sites 
generated observed crash counts lower than the critical crash count values. Similarly, 
for the collection of non-hazardous locations, when the simulated data are larger than 
the values CC0.90, CC0.95, and CC0.99, FPs are generated. FPs and FNs are simply 
counted for each simulation run. Similarly, the number of FIs is the sum of the 
number of false negatives and positives.  

 
4. To make the three performance metrics comparable across simulations, the 

percentage of FNs, FPs, and FIs are calculated. Because the FNs are the truly 
hazardous locations that are mistook as “safe” sites, the percentage is simply the 
number of simulated FNs divided by the simulated truly safe sites; similarly, the 
percentage of the FPs is the number of FPs divided by the truly hazardous locations. 
Finally, the percentage of FIs is obtained by dividing the sum of FNs and FPs by the 
total number of randomly generated data locations. For example, suppose there are 20 
sites under inspection with the top five of them are identified as hot spots according 
to the corresponding information of TPM. Again, the number of simulated data for 
each site is assumed as 30, thus, the total truly hazardous locations would be 150, and 
the number of truly safe ones is 4,500. If 45 sites among the 150 truly hazardous 
locations are wrongly viewed as safe ones, the percent of FN would be 
45/4,500*100%=1%.    

 
5. Finally, the percentage of FPs, FNs, and FIs across simulation conditions are tallied 

and reported.  
 
Tables 3 and 4 summarize the results of the errors (FNs, FPs, and FIs) produced under the 
variety of simulation conditions. Table 3 presents the results when heterogeneity of crash 
counts is relatively low, while Table 4 presents the results when heterogeneity is 
relatively high. Critical crash count threshold values increase from left to right in both 
tables. The runs labeled CI, SR, and EB refer to classical confidence interval, simple 
ranking, and Bayesian methods of HSID respectively. Finally, L, S, and E refer to the 
underlying characteristics shapes of the cumulative distributions of TPMs: linear, s-
shaped, and exponential respectively.  
 
For low heterogeneity and high heterogeneity simulations, the trends of percent errors with 
the increasing of value of δ  are in conformance with each other, however, the values of 
percent errors for low heterogeneity are much higher than those for high heterogeneity. The 
major reasons are likely because the low heterogeneity dataset has relatively small standard 
deviations when compared with the other datasets. The small range of crash counts in a 
dataset makes it more difficult to identify hazardous locations. On the contrary, it is easy to 
identify hot spots when the corresponding crash counts are greatly dispersed, particularly 
when dispersion is large on the upper most crash count deciles.   
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Another prominent characteristic associated with both tables is that the percentage of 
false negatives decreases in the same direction as δ for the three kinds of HSID methods. 
In most cases the percentage of false negatives is substantially reduced using the EB 
method. The fairly complicated explanation for this is as follows. The threshold value 
divides the top ‘outlying’ crash counts from the remainder of the data, either the top 10%, 
5%, or 1% of observed counts. By definition these counts are more likely to suffer from 
regression to the mean in a subsequent observation period than from counts around the 
TPM.  Thus the crash history of the top x% of crash counts act to reduce the effect of the 
current crash count x when ranking these sites. As a result, sites that suffer less from 
regression to the mean get ranked higher in the list—sites that ordinarily would have been 
ranked as false negatives.    
 
Conversely, the decrease of the percentage of the false negatives is accompanied by an 
increase in the percentage of the false positives (except for δ of 0.95 for L1 and L2, in 
these two cases, the percent error of FP under the confidence analysis method is the 
smallest among the three threshold values). It shows that the stricter identification criteria 
would select less non-hazardous sites for remedy, although it may leave the larger 
number of truly hazardous locations undetected. Surprisingly, the false identifications 
also go the same direction to the false negatives with the increase of the value of δ.  
Probably the best explanation for this phenomenon is that the relatively small number of 
false negatives can lead to more false positives, and then reduce the efficiency of the 
investment of local governments. In conclusion, the percent of false positives increases 
with the rising of thresholds, whereas the percent false negatives and false identifications 
decrease with the rising of thresholds. Results in almost all simulation scenarios share the 
same trends. 
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Table 3: Percent Errors for Low Heterogeneity in Crash Counts 
 

Percent Errors: Low Heterogeneity 

δ 0.9 0.95 0.99 

Method   CI SR EB CI SR EB CI SR EB 

FN 2.49 3.55 2.40 1.54 2.09 1.41 0.63 0.55 0.38 

FP 62.76 31.97 21.63 82.47 39.73 26.87 114.32 54.00 37.67 E1 

FI 7.17 6.39 4.33 5.31 3.97 2.69 2.46 1.08 0.75 

FN 2.21 4.44 2.91 1.39 2.40 1.73 0.15 0.62 0.45 

FP 106.14 39.97 26.20 65.24 45.67 32.80 431.62 61.00 45.00 L1 

FI 8.75 7.99 5.24 3.62 4.57 3.28 2.10 1.22 0.90 

FN 0.54 6.53 5.28 0.21 3.48 2.90 0.00 0.81 0.73 

FP 753.44 58.73 47.50 1251.33 66.20 55.13 NA 80.33 72.33 S1 

FI 10.03 11.75 9.50 6.46 6.62 5.51 1.91 1.61 1.45 

Note: 1.FN—False negatives; FP—False Positives; FI—False Identifications.  
2. In the table, the reason that some FPs can exceed 100% is due to non-normality of the distribution 

and setting of threshold, and in these cases, the CI method identifies more hazardous locations than truly 
exist. For the same reason, the existence of “NA” in the table is due to zero truly hazardous locations 
identified by confidence analysis.  

3. The shaded cells show the lowest identification error rate. 
 

Table 4: Percent Errors for High Heterogeneity in Crash Counts 
 

Percent Errors: High Heterogeneity 

δ 0.9 0.95 0.99 

Method   CI SR EB CI SR EB CI SR EB 

FN 1.78 2.09 1.13 1.33 1.33 0.86 0.39 0.26 0.17 

FP 24.37 18.77 10.13 32.56 25.33 16.40 57.07 26.00 16.67 E1 

FI 4.13 3.75 2.03 3.34 2.53 1.64 1.54 0.52 0.33 

FN 1.89 2.55 1.57 1.50 1.43 0.91 0.44 0.37 0.23 

FP 36.33 22.93 14.13 32.20 27.20 17.33 45.22 36.67 22.67 L1 

FI 5.14 4.59 2.83 3.40 2.72 1.73 1.29 0.73 0.45 

FN 2.16 2.73 1.74 1.17 1.31 0.71 0.47 0.26 0.12 

FP 34.80 24.53 15.67 41.08 24.87 13.47 38.37 25.33 12.33 S1 

FI 5.16 4.91 3.13 3.31 2.49 1.35 1.32 0.51 0.25 

Note: 1. FN—False negatives; FP—False Positives; FI—False Identifications. 
  2. The shaded cells show the lowest identification error rate. 
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There is also some difference among the percent errors resulting from the three 
identification methods. Comparing to the other two traditionally methods, the Bayesian 
technique yields fewer false negatives in most cases in both the tables. That is, the 
Bayesian technique is more efficient in flagging the sites that require further analysis. 
Unfortunately, this higher efficiency is at the cost of the substantial number of false 
positives generated, which reduce the efficiency of the investment of local governments. 
Only in the case of budgetary constraints may the false positives not result in the 
unneeded repairs of the locations that are not truly hazardous. As for the confidence 
interval method and the simple ranking method, there is no big difference between them. 
Both methods generally generate higher identification error rate than does Bayesian, 
indicating the relatively worse performance in identifying hazardous locations.  
 
EXPERIMENT FOR OPTIMIZING DURATION OF CRASH HISTORY 
 
May (1964) first discussed the issue that how many years of accident data should be 
analyzed when determining the accident-prone locations. He explored the difference 
between sorts of average accident counts with “t” increasing until 13 years. The result has 
shown that the difference diminishes as “t” increases as well as the marginal benefit of 
increasing “t” declines. The “knee” of the curve is said to occur at t=3 years. Based on 
that information, May then came to the conclusion that “there is little to be gained by 
using a longer study period than three years.” 
 
In this experiment, a different logic is employed to explore the best study duration for 
accident data analysis. Instead of using the simple accident counts in the method 
presented by May, this experiment will utilize the identification error rate as an indicator, 
or the identification error rates associated with various “t” years compared to obtain the 
optimum study period. When conducting history analysis, the three identification 
methods are also employer, and the corresponding processes remain the same. The only 
difference lies in how to use the different periods of data. To show the logic clearly, 
another small snapshot is used again (Table 5). First, the ith column of data is assumed to 
represent the ith-current-year accident data. For example, for site 9, the first four data 
represent the accident counts during the four current years, and the rest data in the first 
four columns can be viewed as the accident counts associated with other similar sites 
during the same period. Let’s consider conducting Bayesian analysis. It is known that for 
a given t- year period, Equation 24 is used for each site to compute the corresponding 
expected accident counts. However, since the TPM represent the long-term number of 
accidents per year, thus for the t-year period, average accident counts per year should be 
used in this equation. In the end of forth year, the “x” for site 10 should be 14 accidents 
(average of the first 4 data), and E {λ} =12.88accidents (row average accident), VAR {λ} 
=5.18 accidents2 (row variance), α=0.713 thus the expected accident counts associated 
with site 10 by using the first 4-year data is 13.2 accidents. Obviously, for the 16 
different observation periods, we can generate 13 Bayesian expected data associated with 
site 10 by using the 4-year history record. Based on these Bayesian expected accident 
counts of various sites, the previously stated process of the Bayesian method can then be 
employed to compute the percent of false negatives, false positives, and false 
identification for different “t” years. The similar history analysis logic can also apply to 
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the other two identification methods. Due to a large amount of iterative computations in 
this experiment, a special computer code is written to calculate the various identification 
error rates associated with different period of accident data.  
 

Table 5: Snapshot of the Simulated Data 
 
Site TPM Simulated data 
1 3 7 3 4 3 2 1 2 3 3 4 2 3 3 4 3 2 
2 3 3 5 5 2 3 1 1 4 2 2 1 2 2 7 4 5 
3 5 5 7 6 5 5 6 4 4 3 4 7 4 2 4 7 2 
4 7 4 6 5 9 4 6 7 4 8 10 13 6 9 7 7 3 
5 8 8 6 8 6 9 9 12 7 2 3 8 11 7 5 7 7 
6 9 15 10 16 12 12 8 8 6 9 12 18 15 9 7 12 8 
7 9 9 10 12 8 11 5 8 9 13 9 10 12 7 7 8 5 
8 12 12 5 11 18 12 12 16 12 7 10 13 10 9 11 9 13
9 13 13 13 12 10 12 12 13 14 11 7 14 13 7 16 18 7 
10 14 16 14 15 11 10 12 15 9 15 15 13 11 11 16 12 11
11 15 17 15 13 15 13 13 16 16 13 11 18 14 9 12 22 18
12 16 18 19 20 11 7 14 12 10 16 18 14 17 9 15 19 18

 
 

In theory, as the “t” increases, the expected accident counts of each site, which is 
computed based on the simulated data, would converge to its TPM (the reason is that in 
the experiment each row of simulated data strictly follow the Poisson distribution) and 
the corresponding identification error rate would converge to zero. However, in a real 
situation with “t” increasing, each site would suffer from more influential factors, and 
thus the long period of data generally cannot represent the current situation. On the other 
hand, if the short period of data is used, lots of information would be missing and it is 
difficult to obtain the true long-term accident counts. Consequently, a trade-off should be 
made to find the study period that is short enough to represent the current condition and 
long enough to obtain the true expected accident counts. In this experiment, various 
identification rates are plotted versus the different “t” years. The “knee” of such a curve 
is expected as the optimum study period. 
      
Considering the data is older than 10 years, it no longer reflects a current situation. In the 
experiment, the 30 simulated data are averagely divided into 3 groups, that is, the first 10 
columns of data belong to group 1, the eleventh to twentieth column of data follows into 
group 2, the last 10 columns of data belong to group 3. The common characteristic shared 
by the three groups is assumed to reflect the true relation between identification error rate 
and “t” years. For each group, the three common confidence levels, 90%, 95%, and 99% 
are used for the three analyses. 
 
In the diagram of identification error rate vs. “t” year, there still exists some fluctuations 
along the curve, although generally the identification error rate decreases while “t” 
increases. To quickly determine and eliminate the initial “warm-up” period (i.e., the 
period before the knee of the curve), Welch’s moving average method (Kelton, 2003) is 
utilized. Through the moving average, this method can further out the statistical 
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fluctuations in observations (yi) and illustrate clearly the “warm-up” period.  As shown in 
Figure 3, series 1 represents the original Fn rates associated with different “t.” Due to the 
existence of two outliers (the plot of t=4 and t=6), it is difficult to obtain the “knee” of the 
curve. However, it is easy to know from the series 2 (the curve of moving averages) that 
the 5-year range is the best study period.    
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Figure 3: Moving Averages vs. Original Statistic 

 
The moving average )(wYi  (where w, the window size) of random observations is 
defined as follows: 
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In this experiment, the window size is selected as 1.  

 

RESULTS 
 
Similar to the previous experiment, the three HSID methods are also performed in this 
experiment to explore the optimal duration of accident history. The number of various 
optimal “t” across the three confidence levels and three groups is shown in the Tables 
6~8. For the convenience of viewing, the plots of the frequency of various t-periods for 
the different confidence levels and groups are illustrated in the Figures 4~6, and the plots 
of the cumulative results of all the confidence levels and groups are demonstrated in the 
Figures 7~8. Readers interested in the details of identification error rates associated with 
various HSID methods, confidence levels, and groups are referred to Appendix B. 
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Table 6: The Number of t-year Which is the “Knee” of the Curve for Group 1 
 

Year 1 2 3 4 5 6 7 8 9 10 
90%  1 22 13 6 8 2 2   

95% 1 1 23 10 8 7 2 2   

99%  2 20 8 10 6 4 3 1  

SUM 1 4 65 31 24 21 8 7 1  
Note: In this group there are 162 scenarios (3 identification methods, 3 kinds of shapes, low and high 
heterogeneity for crash counts, 3 threshold values for truly hazardous locations, and 3 kinds of false 
identifications, or FN, FP, FI).  
 

Table 7: The Number of t-year Which is the “Knee” of the Curve for Group 2 
 

Year 1 2 3 4 5 6 7 8 9 10 

90% 2 0 28 10 4 5 3 1 1  

95% 0 3 21 11 7 6 4 2 0  

99% 0 1 27 9 5 7 2 3 0  

SUM 2 4 76 30 16 18 9 6 1  

Note: In this group there are 162 scenarios (3 identification methods, 3 kinds of shapes, low and high 
heterogeneity for crash counts, 3 threshold values for truly hazardous locations, and 3 kinds of false 
identifications, or FN, FP, FI).  
 
 

Table 8: The Number of t-year Which is the “Knee” of the Curve for Group 3 
 

Year 1 2 3 4 5 6 7 8 9 10 

90%  1 22 14 6 5 2 1 1  

95% 2 2 20 7 7 8 3 4 1  

99%  3 27 11 5 5 4 1   

SUM 2 6 69 32 18 18 9 6 2  

Note: In this group there are 162 scenarios (3 identification methods, 3 kinds of shapes, low and high 
heterogeneity for crash counts, 3 threshold values for truly hazardous locations, and 3 kinds of false 
identifications, or FN, FP, FI).  
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Figure 4: The Number of t-year Which is the “Knee” of the Curve for 90% 

Confidence Level 
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Figure 5: The Number of t-year Which is the “Knee” of the Curve for 95% 

Confidence Level 
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Figure 6: The Number of t-year Which is the “Knee” of the Curve for 99% 

Confidence Level 
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Figure 7: The Number of t-year Which is the “Knee” of the Curve for All 

Confidence Levels 
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Figure 8: The Cumulative Percent Distribution of Various t-years 

 
In terms of Figures 7 and 8, it is known that across all the simulation scenarios, a 3-year 
crash history represented the largest portion of “best” study period of crash history, and 3 
through 6 years make up almost 90% of all the optimum t-years. Hence, as the trade-off 
between the long and short history record, if there is no significant physical change in the 
location under securitization and the long history record can be obtained, it is suggested 
that the most recent 6-years of crash record is sufficient to capture the majority of the 
beneficial effect of crash history. In contrast, 3-years of crash history data represents the 
‘shortest’ period of time that should be used and which achieves a significant benefit of 
crash history (under most general conditions). Crash histories of 1 and 2 years provide 
relatively little benefit in the methods and under the range of conditions assessed.  
 
To illustrate the improvement in identification performance results from using 3-year 
history data, Tables 9 and 10 are provided (in contrast to Tables 3 and 4). The differences 
lie in that Tables 3 and 4 use 1 year of crash data and the percent of identification rates 
are computed based on the last 30 years of data, whereas Tables 9 and 10 use 3-year data 
and the corresponding percent of identification rates are calculated on the basis of the 
current 10 years of data.  
 



 37

Table 9: Percent Errors for Low Heterogeneity in Crash Counts (3 Years Data) 
 

Percent Errors: Low Heterogeneity 

δ 0.9 0.95 0.99 

Method  CI SR EB CI SR EB CI SR EB 

FN 2.02 2.32 1.53 1.36 1.34 0.82 0.89 0.40 0.25 

FP 28.06 20.88 13.75 38.60 25.50 15.50 48.56 40.00 25.00 E 

FI 4.68 4.18 2.75 3.69 2.55 1.55 2.13 0.80 0.50 

FN 2.56 2.75 2.13 1.69 1.72 1.25 0.47 0.51 0.40 

FP 33.16 24.75 19.13 50.00 32.75 23.75 91.07 50.00 40.00 L 

FI 5.56 4.95 3.83 4.33 3.28 2.54 0.14 0.67 0.53 

FN 1.10 4.88 4.33 0.68 2.88 2.54 0.14 0.67 0.53 

FP 228.21 43.88 39.00 239.38 54.75 48.25 362.16 66.25 52.50 S 

FI 9.05 8.78 7.80 5.45 5.48 4.83 1.81 1.33 1.05 

Note: 1. FN—False Negatives; FP—False Positives; FI—False Identifications; CI—Confidence Interval; 
SR —Simple Ranking; EB—Empirical Bayesian; E—Exponential Shape; L—Linear Shape; S— Sigmoidal 
Shape. 

2. In the table, the reason that some FPs can exceed 100% is due to non-normality of the distribution 
and setting of threshold, and in these cases, the CI method identifies more hazardous locations than truly 
exist. For the same reason, the existing of “NA” in the table is due to zero truly hazardous locations 
identified by confidence analysis.  

3. The shaded cells show the lowest identification error rate. 
 

Table 10: Percent Errors for High Heterogeneity in Crash Counts (3 Years Data) 
 

Percent Errors: High Heterogeneity 

δ 0.9 0.95 0.99 

Method   CI SR EB CI SR EB CI SR EB 

FN 1.08 1.28 0.67 0.96 0.95 0.71 0.24 0.14 0.10 

FP 13.96 11.50 6.00 15.32 18.00 13.50 34.66 13.75 10.00 E 

FI 2.51 2.30 1.20 1.98 1.80 1.35 1.00 0.28 0.20 

FN 1.72 1.63 1.36 1.19 0.96 0.87 0.41 0.21 0.20 

FP 14.37 14.63 12.25 15.07 18.25 16.50 20.11 21.25 18.25 L 

FI 3.08 2.93 2.45 2.14 1.83 1.65 0.86 0.43 0.38 

FN 2.10 2.04 1.65 0.70 0.66 0.55 0.40 0.15 0.10 

FP 18.01 18.38 14.88 20.83 12.50 10.50 21.03 15.00 10.00 S 

FI 3.73 3.68 2.98 1.85 1.25 1.05 0.90 0.30 0.20 

Note: 1.FN—False Negatives; FP—False Positives; FI—False Identifications; CI—Confidence Interval; 
SR —Simple Ranking; EB—Empirical Bayesian; E—Exponential Shape; L—Linear Shape; S— Sigmoidal 
Shape. 

2. The shaded cells show the lowest identification error rate. 
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By comparing these tables, it is known that using 3 years of crash history data results in 
significant improvements in error rates for all three methods, CI, SR, and EB. Moreover, 
improvements are seen across most scenarios (except for two false negatives for Method 
CI)—with the EB method showing 10% to 20% reductions in errors on average. While 
the EB method still shows itself as the superior method, the SR and CI methods benefit 
disproportionately, more, on average, from using longer crash histories—with reductions 
in errors ranging from 15% to 50%.  
 

CONCLUSIONS AND RECOMMENDATIONS 
 
Upon reviewing the previous results of the extensive simulation experiment that is 
described in this report, the following conclusions and recommendations are made: 
1. The EB methods, in general, outperform the other two relatively conventional meth-

ods. Under a range of practical conditions, the EB method offers 50% reductions in 
the percentages of false positives and false negatives compared to CI and SR meth-
ods. The EB analysis benefit, however, is contingent upon reliable and accurate safety 
performance functions for predicting ‘expected’ safety of comparison sites, which 
increases the demand for good geometric, traffic, and crash data, and is inherent in 
the analysis. It is strongly recommended that EB methods be incorporated into main-
stream practice by managers of road safety who currently may use CI or SR methods.   

2. In low heterogeneity situations, the benefits of the EB methods are much less 
pronounced.  That is, when the observed differences in crashes between ‘high-risk’ 
and ‘safe’ sites is relatively small, the EB method offers only minor improvement 
compared to the SR and CI methods. This might suggest that municipalities that 
manage safety on systems with relatively few crashes might not experience 
significant improvements in performance by changing analysis platforms from SR 
and CI methods to the EB method.  

3. The analysis of crash history suggests that a 3-year crash history constitutes the 
largest portion of the 486 crash history periods examined, and 3 through 6 years 
constitute almost 90% of all the ‘optimum’ crash histories. It is recommended that if 
possible at least 3 years of crash history duration be used in a HSID analysis, and the 
most recent 6-year crash history record be used if few substantive changes at the site 
during this period occurred.  

4. Finally, a drastic improvement between the SR method (which is still used in 
practice) with 1 year of crash data and the EB method with 3 years of crash data is 
possible. For example, the percent of false negatives and false positives associated 
with the latter ranges between 25% and 50% less than those associated with the 
former. A significant improvement in the results from SR and CI methods is also 
possible by including 3 to 6 years of crash data, but these methods are still 
outperformed by the EB method.  

 
IN SUMMARY, THE EB METHOD SHOWS ITS CONSISTENT ADVANTAGES 
OVER THE OTHER TWO APPROACHES IN MOST SIMULATED SCENARIOS. 
THE NEXT CHAPTER IS DEDICATED TO MODELING THE SAFETY 
PERFORMANCES OF VARIOUS CLASSIFICATIONS OF ROAD SECTIONS 
WITHIN ARIZONA, WHICH IS THE IMPORTANT INPUT FOR CONDUCTING EB 
ANALYSIS IN THE FUTURE ALGSP.
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CHAPTER IV - SAFETY PERFORMANCE FUNCTIONS FOR 
ARIZONA ROAD SEGMENTS 
  
The experiment described in chapter III of this report has illustrated that EB is a superior 
method compared to the other two conventional methods. Fewer false identifications are 
produced using the EB analysis from one-year through ten-year accident histories. 
However, the demonstrated benefits associated with Bayesian technologies are based on 
simulated crash data with some assumptions. The evaluation of the identification 
performances of EB techniques based on real crash data is lacking. As distinct from the 
sample moments method used in the experiment (where there is lack of detailed crash 
information such as traffic counts, geometric designs, etc.), the multivariate regression 
method, which utilizes an appropriate function of independent variables (which represent 
the traits of sites), is generally employed when conducting EB analysis on the real crash 
data. The multivariate regression models yield SPFs of various roadway classifications 
(e.g., two lane highways). Considering the importance of SPFs for the improvements of 
the current ALGSP model, the chapter is dedicated to developing SPFs of various 
roadway functional classifications in Arizona. This chapter is divided into four sections: 
data description, how to create SPFs, results of the SPFs, and conclusions. 
 
DATA DESCRIPTION 
 
Since design criteria and level of service vary according to the function of the highway 
facility, the safety performance function is developed for each functional classification of 
road segments. The functional classification of roadways is shown in Table 11. 
 
The safety performance functions for various functional road sections in Arizona are 
created based on the crash data for the year 2000 provided by ADOT, including accident 
number, AADT, road section length, etc. However, in the subsequent accident data 
analyses using various hotspots identification methods, the three-year data, 2000-2002, 
are used as accident history, assuming that there is no significant change in AADT during 
these years.  
 
 

Table 11: Functional Classification Codes  
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The basic statistics for roads of various functional classifications are shown in Table 12, 
in which it is illustrated that the sample sizes of rural local (9), urban collector (17), and 
urban local (19) are 12, 10, and 3 respectively. For the reason of small sample size, the 
SPFs of these three kinds of road sections are not created in this report. It is expected that 
they will be provided when more data are collected.  
 

Table 12: Statistics for Roads of Various Functional Classifications 
 

Functional 
Classification1 

Number of 
Sections 

Length (km) Accidents 
(2000-2002) 

Average 
AADT 

1 403 996.113 8122 23810 
2 441 1115.128 7012 7603 
6 436 1132.092 5261 5483 
7 628 1856.064 5285 2637 
8 100 365.419 416 684 
9 12 22.124 29 3194 
11 207 171.647 11999 106338 
12 165 199.472 9557 95931 
14 429 270.617 9685 17407 
16 164 139.709 2282 11499 
17 10 7.524 136 4144 
19 3 4.428 13 433 
Note 1: The functional classification is shown in Table 11. 

 
HOW TO CREATE SPFS? 
 
Due to the existence of overdispersion of crashes in various classifications of road 
sections in Arizona and characteristics of accident occurrences, Negative Binomial 
models provided in S-PLUS software package are used to create these SPFs.  
 
The advantage of using a negative binomial model is that Poisson distribution restricts 
the mean and the variance to be equal (E[yi] = VAR [yi]). If this equality does not hold, 
the data are said to be under dispersed (E[yi] > VAR [yi]) or overdispersed (E[yi] < VAR 
[yi]). The negative binomial model has the following expression:   
 

)( iii xEXP εβλ +=           (26) 
 
Where EXP (εi) is a gamma-distributed error term with mean 1 and variance α2. The 
addition of this term allows the variance to differ from the mean as below: 
 

2[ ] [ ][1 [ ]] [ ] [ ]i i i i iVAR y E y E y E y E yα α= + ⋅ = + ⋅       (27) 
 
Due to data limit and noticing only the purpose of the crash prediction of various 
highways, only two independent variables, namely AADT and road segment length (SL) 
are involved in the models. Two different model forms are used. The first model form is: 

b
i AADTSLa )(**=λ                                                                                                 (28) 
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The second model form is: 
b

i AADTSLEXPa )(*)(*=λ                                                                                       (29) 
Where a and b are model parameters estimated by using NB regression model.  
 
By using the SL as a constant factor (i.e., the number of crashes on a segment is 
proportional to its length), the first model form is reasonable since it ensures the predicted 
accidents is zero when SL is zero. However, the evaluation results showed that the second 
model form yielded smaller summation prediction errors (PRESS) across the nine 
classifications of road segments than those of the first model form. In addition, the authors 
found that there is a nonlinear relationship between the crash number and the length of 
segments in the data. Finally, SL is never zero and so the model is free to predict non-zero 
values at this value of SL. Hence, the second model form is selected to develop the SPFs of 
the road segments.    
 
Corresponding diagnostic problems (whether or not take transformation on variables, 
identifying and dealing with the issue of multicollinearity, etc.) are addressed to ensure 
the accuracy of the SPFs. It is important to note that the data outliers and the data with 
high leverage values (i.e. extreme influence on model parameters) are not excluded for 
modeling since no errors associated with these data were observed. 
 
RESULTS OF SPFS 
 
The complete results of the nine NB regression models are presented in Appendix C. 
Criteria used to maintain variables in the models satisfy two conditions: 1) the p-value of 
the variable’s estimated coefficient is smaller than or equal to 0.05, corresponding to a 
confidence level of 95% or better; and 2) the sign and magnitude of the modeled effect 
agrees with theoretical expectations of the crash process. 
 
In addition to the model coefficients and associated statistics, the measurement of 
goodness-of-fit is also an important indicator to show the performance of the models. An 
equivalent measure to R2 in ordinary least squares linear regression is not available for a  
negative binomial regression model due to the nonlinearity of the conditional mean 
(E[y׀X]) and heteroscedasticity in the regression (Washington, et al., 2003).  As an 
alternative, Rp2 statistic, which is based on standardized residuals, is computed as:  
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where the numerator is similar to a sum of square errors and the denominator is similar to 
a total sum of squares.   
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A second method for assessing model fit is the G2 statistic. The better model will yield 
with the smallest G2 value. In order to compute G2 values, it is necessary to estimate the 
individual deviances using Equation 31.  
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The sum of the deviances is equal to the G2 value, as defined in Equation 32. 
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It is noteworthy (from Equation 31) that di would take the value of negative infinite with 
yi equaling to 0. Thus, all the locations with yi =0 are excluded in order to calculate the 
statistic G2. 
 
The results of Rp

2 statistic and G2 are also shown in the Tables 54~62 (see Appendix C). 
 
CONCLUSIONS 
 
All the magnitudes and signs associated with coefficients of the nine SPFs agree with 
engineering intuition. Generally, the overdispersion parameters of the urban road segment 
SPFs are significantly larger than those of rural segments; the probable reason is that 
there is much greater variability of AADT on urban highways and because relatively 
more unmeasured factors influence urban road safety. The SPF of Urban Interstate 
Principal Arterials has the greatest value of Rp

2, indicating that this model explains the 
highest proportion of variation. However, the relatively low value of Rp

2 of other SPFs 
does not suggest low quality of these models, and is instead explained by the somewhat 
lower number of variables (only two independent variables in the models) and data 
outliers with high leverage and influence values. In general the more data and longer 
accident history that are used, the more accurate the models tend to be.  
 
It is expected that the input of these SPFs can facilitate the incorporation of EB into the 
ALGSP software. The next chapter contains a comprehensive comparison of alternate 
identification methods based on the SPFs.  
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CHAPTER V - COMPARISON OF HSID METHODS BASED ON 
REAL CRASH DATA OF ARIZONA ROAD SEGMENTS 

 
With the safety performance functions available, the EB technique is then readily 
implemented to analyze the real crash data of Arizona road segments. The objective of 
this chapter is to examine whether or not the consistency of the advantages associated 
with the EB method exist in real situations. Rather than use the same three HSID methods 
which are explored in the previous experiment design, different HSID methods are 
implemented and compared in this chapter. They include the empirical Bayes’ method, 
the accident reduction potential (the ARP) method, the accident frequency method, and 
the accident rate method. Five tests are proposed to compare the identification 
performances of the alternative HSID methods. These tests are the site consistency test, 
the method consistency test, the total ranking differences test, the false identification test, 
and the false true Poisson mean differences test. In addition, the similarity of 
identification results of the various HSID methods are explored as well. The remainder of 
this chapter first describes the procedures of implementing the EB method and the ARP 
method which are based on SPFs. The data used for assessment of performances are then 
described. Detailed machinery of the five statistical tests and relative test results are 
followed by the conclusions and recommendations. 
 

HSID METHODS BASED ON SPFS  
  
The literature review provided the underlying assumptions and general logic of Bayesian 
techniques, and the experiment design section presented the mechanics of the EB analysis 
based on the method of sample moments. However, the description of how to conduct EB 
analysis by using SPFs is lacking. Plus, the accident reduction potential method is based 
on the EB method and also requires the use of SPFs. The detailed mechanics of the SPF-
based EB and the ARP methods are described in the following sections.  
 

 The EB Approach Based on SPFs 
 
It is known from chapter II that the underlying principle of EB approach indicates that 
safety of a site is affected not only by some common measurable factors shared by a 
group of similar sites, but also by some unique characteristics associated with the specific 
site. Thus, the expected safety of the site (λi) can be expressed as follows: 
 

KEi )1()( αλαλ −+=                                                                                                (33) 
 

Where K is the actual crash count of the site under inspection, E(λ) is the expected 
number of crashes occurring at a specific site group (similar sites), and α is the weight 
factor, which almost falls between 0 and 1. 
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The crashes expected on the similar sites (E(λ) ) are calculated through the SPFs in which 
the dependent variable is µ, or the average crashes per km-year for road segments or 
crash counts per year for intersections, and the independent variables are various road and 
crash characteristics (in this report only AADT and road sections are included). As for 
the weight, some past studies (Hauer, et al., 2002; Persaud, et al., 1999) have provided a 
detailed derivation and justification. Generally, the weight is calculated as follows: 
 

1]/)(1[ −∗+= ϕµα Y                                                                                                   (34) 
 

Where Y is the number of years of crashes used, and ϕ is the overdispersion parameter 
which is a constant for a given model and is derived from the regression calibration 
process. For road sections, it is estimated per unit length. 
 

 Accident Reduction Potential Method Based on SPFs 
 
The accident reduction potential is defined as the deference between the expected crash 
counts of specific site under inspection and the expected crash number of its similar sites. 
Thus the ARP method is to rank the value of the λi -E (λ) to identify the hazardous 
locations. If the λi is substituted by the right-hand side of Equation 33, the ARP can then 
be expressed as follows: 
 

))()(1( λα EKARP −−=                                                                                           (35) 
 

where α, K, and E(λ) remain the same as defined in Equation 33. By comparing Equation 
33 and Equation 35, it is known that the higher crash counts in history (K) will increase 
the priority for further investigation of specific locations in both EB and the ARP 
methods, whereas the value of E(λ) poses converse impacts on the selection of hot spots. 
In the EB method, the greater the value of E(λ) , the higher the probability that the 
specific location is put into the list of hot spots. But in the usage of the ARP, the increase 
of E(λ) will decrease the value of the ARP, and thus yields a lower probability of being 
selected as a dangerous site.  
 

Numerical Examples to Show the HSID Methods Based on SPFs 
 
To illustrate how to use the SPF-based EB and accident reduction potential methods, two 
numerical examples are now provided. 
 
Numerical Example 1: Road Segment with 1 Year of Crash Counts 
 
A rural minor arterial segment is 2 km long, has an AADT of 5,000, and recorded 10 
crashes in the year of 2000. From Table 56, it is known that the SPF for such a 
classification of road segment within Arizona is 0.0024×ADT0.799 crashes/km-year, with 
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an over-dispersion parameter ϕ =3.22 /km. To estimate the safety of the road segment, 
one would proceed as follows: 
 
Step 1: Average for estimates of this kind. Roads such as this have 0.0024×50000.799=2.16 
crashes/km-year, on average. Therefore, segments of 2 km long are expected to have 
2×2.16=4.32 crashes in one year. 
 
Step 2: Weight. A weight is needed for joining the 10 crashes recorded on this road and 
the 4.32 crashes for an average of this kind. To obtain the weight, use equation 34. Here, 
µ=2.16 crashes / km-year, Y=1, and the estimate of ϕ =3.22 /km. Therefore, weight = 
1/[1+(2.16×1)/3.22] = 0.599. Note that both µ and ϕ are in units of per unit length.  
 
Step 3: EB estimation. Using Equation 34, the estimate of the expected crash frequency 
for the specific road segment at hand is: 0.599×4.32+0.401×10 = 6.60 crashes in one 
year. Note that 6.60 is between the average for similar sites (4.32) and the crash counts 
for this site (10). The EB estimator ‘pulls’ the crash count toward the mean and thereby 
accounts for the regression to the mean bias.    
 
 Step 4: Accident reduction potential (the ARP) estimation. Using Equation 35, the 
estimate of the accident reduction potential for this road segment is: (1-0.599)×(10-4.32) 
= 2.28 crashes in one year.  
 
Numerical Example 2: Road Segment with 3 Years of Crash Counts 
 
Suppose road segment one has 3 years of crash counts (10, 8, 11) and that the ADT in 
each of those three years was 5,000 vpd. To estimate the safety of the road segment, the 
following steps should be taken: 
 
Step 1: Average for entities of this kind. As before, segments of this kind are expected to 
experience 2.16 crashes/km-year. On 2 km in 3 years, one can expect 2×2.16×3=12.96 
crashes. 
 
Step 2: Weight. The weight is 1/[1+(2.16×3)/3.22] = 0.332. Note that with one year of 
crash data, the weight was 0.599. As more years of crash data are used, the weight 
diminishes.  
 
Step 3: EB estimation. Using Equation 34, the estimate of the expected crash frequency 
for the specific road segment at hand is: 0.332×12.96+0.668×(10+8+11) = 23.67 crashes 
in 3 years.  
 
Step 4: Accident reduction potential (the ARP) estimation. Using Equation 35, the 
estimate of the accident reduction potential for this road segment is: 
 (1-0.332)×(29-12.96) = 10.71 crashes over 3 years.  
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DATA DESCRIPTION  
 
As mentioned in chapter IV, 3-year crash data (Year 2000-2002) are utilized to evaluate 
the performances of various HSID methods. For the convenience of conducting 
corresponding evaluation tests, the 3-year crash history are separated into two groups, 
Period 1 (Year 2000) crashes and Period 2 (Year 2001-2002) crashes. Within the state of 
Arizona, the highway system is broken down into reference sections generally delimited 
by main intersections, thus the road section lengths vary across various road sections. To 
make each road section comparable, the crash density (i.e., crashes/km) is used for each 
HSID method. That is, the accident frequency method uses crashes/km-year to identify 
hazardous road sections, accident rate employs crashes/km-million vehicles to flag 
dangerous sections, and EB and the ARP methods also use the indicator based on 
crashes/km. It is important to note that more accurate results would be obtained if these 
sections were further divided into shorter sections, for instance, 0.5-km non-overlapping 
segments.  
 

TESTS FOR COMPARISON OF HSID METHODS   
 
In the former experiments, the false identification test was conducted to compare the 
performance of three HSID methods in which the percent of false negatives, false 
positives, and total false identifications are computed and ranked. This section presents 
other useful tests to examine the relative performance of alternative HSID methods, 
including the site consistency test, the method consistency test, total ranking differences 
test, and false true Poisson mean differences test. The definitions of these tests and the 
corresponding procedures are described in detail in the following sections. For the 
convenience of understanding the mechanics of each test, a sample of 20 road sections is 
randomly selected from the principal arterial crash data and the associated information is 
presented in Table 13. The sites are sorted with respect to their crash counts in the year 
2000.   
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Table 13: Crash Information of a Sample of 20 Principle Arterial Road Sections  
 

Period 1 (2000) Period 2 (2001-2002) Site 
number Crashes Accident 

rate1  
Bayesian  
crashes  

the 
ARP2 

Crashes Accident 
rate1      

Bayesian  
crashes  

the 
ARP2 

 3-year 
crash 
mean          

1 1 0.157 1.21 -0.03 4 0.628 2.34 1.54 1.67 
2 1 0.154 0.82 0.01 2 0.308 1.84 0.12 1.00 
3 1 0.16 0.76 0.09 1 0.16 1.14 -0.08 0.67 
4 2 0.308 0.83 0.44 2 0.308 1.52 0.06 1.33 
5 2 0.32 0.79 0.96 1 0.16 0.84 0.02 1.00 
6 4 0.52 1.71 1.42 5 0.65 2.68 1.16 3.00 
7 4 0.632 1.81 1.62 10 1.58 2.94 4.3 4.67 
8 5 0.771 1.86 1.50 13 2.004 3.94 2.98 6.00 
9 5 0.789 1.79 3.20 4 0.632 2.98 0.56 3.00 

10 6 0.741 1.92 0.20 17 2.1 4.06 6.78 7.67 
11 6 0.93 1.82 1.49 11 1.706 3.9 0.22 5.67 
12 6 0.94 1.89 3.75 16 2.506 3.62 7.98 7.33 
13 7 1.115 1.95 0.80 15 2.39 4.24 1.12 7.33 
14 7 1.103 2.01 1.82 17 2.678 4.86 8.36 8.00 
15 8 1.281 1.96 1.09 20 2.402 3.78 7.56 9.33 
16 8 1.263 1.99 4.37 15 2.368 4.54 5.24 7.67 
17 11 1.383 3.56 1.08 16 2.012 6.36 0.16 9.00 
18 11 1.733 4.33 4.06 31 3.308 6.82 13.98 14.00* 
19 12 1.843 3.58 4.15 28 3.378 6.86 11.78 13.33 
20 14 2.197 4.02 5.07 32 3.138 8.9 18.52 15.33* 
Note: 1.The unit of accident rate is crashes/million kilometers. 
          2. The ARP: Accident reduction potential. The negative values result from sections whose Bayesian 
estimators are less than regression values of similar sections. 
          3. The two asterisks in last column show that sites 18 and 20 are considered as truly top 10% 
hazardous locations based on the 3-year crash mean, which is assumed as the true Poisson mean of each 
road section. 
         4. The shaded cells contain the information of the top 10% sections of the 20 samples in terms of the 
crash count in Period 1. 
 

Site Consistency Test 
 
This test is to compare the performances of various HSID methods in terms of the future 
safety of the hot spots identified by these methods. It follows that the sites identified as 
hazardous during an initial period would also reveal inferior safety performance in a 
subsequent period assuming there are no significant changes occurring at these sites. In 
this report, the crash data in Period 1 (assumed as “crash history”) are first used with 
various methods to identify the hazardous road sections. The crash counts of selected 
sections in Period 2 (assumed as “future” period) are then measured. The higher the 
number of crash counts of the selected sections in Period 2, the better the performance of 
the HSID method. It is reasonable to employ the Period 2 crash data to validate the 
alternate HSID methods in the sense that only Period 1 data are used to identify the hot 
spots and Period 2 crash counts can be viewed as an unbiased estimate of true safety of 
the sites.  
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Based on the information of twenty road sections presented in Table 13, it is noticed that  
accident frequency and rate methods identify the same top 10% sections during the year 
2000, or sites (19,20). Their crash counts in Year 2001-2002 are 60 (28+32). The EB 
method yields sites (18, 20) and the resultant total crashes in Period 2 are 63 (31+32). 
Whereas the ARP method selects sites (16, 20) whose total crashes in the next two years 
are 47. In terms of this small sized sample, the hot spots identified by the EB method 
show the worst safety performances in the “future” period, and remedial treatments 
implemented to those sections would yield the highest benefits.  
 

Method Consistency Test 
 
Crash counts in Period 2 are used as a benchmark to compare different HSID methods. 
The underlying assumption is that the identification performances of the HSID methods 
can be revealed through the safety performances of the corresponding identified hot 
spots. This test, however, is to evaluate the method performance by measuring the 
number of same sites identified in both periods. Since the two periods are very close, it is 
safely concluded that most road sections are in the same or similar operational state 
(similar traffic counts, same geometric designs, etc.) and their expected safety 
performances remain the same over the two periods. Therefore, a good HSID method is 
expected to identify a large number of same hot spots by using the crash data in the two 
different periods. The more the same hot spot is identified in the two time periods, the 
more reliable is the HSID method.  
 
In a review of Table 13, it is known that for the accident frequency method, sites (19,20) 
and sites (18,20) are selected as top 10% hot spots in the two periods respectively. The 
number of same sites is thus one, or Site 20. For the accident rate method, the hazardous 
sections are sites (19, 20) and sites (18, 19) respectively. The same hot spot is also one, 
such as Site 19. It is easy to know the number of same hot spots yielded by EB and the 
ARP methods are both one as well. So, a large number suggests that many sites are being 
ranked consistently in both periods, whereas a small number suggests that only few are 
being ranked consistently.  
 

Total Ranking Differences Test 
 
In the method consistency test, the number of hot spots identified in both periods is used 
to measure a method’s reliability. One disadvantage associated with this test is that the 
relative priorities (i.e., rankings of safety performances) of road sections in the two 
periods are not accounted for. This shortcoming can be illustrated by a simple example. 
Consider a group of 100 road sections, among them there is one site whose accident rate 
ranks 1st in Period 1 and ranks 10th in Period 2. If top 10% sites are identified as hot 
spots, then for the accident rate method, this site is screened out in both periods and the 
number of same hot spots increases by one even though the rankings of accident rate 
have significantly changed. To correct for this drawback and to obtain a more precise 
measurement of method reliability, a total ranking differences test is proposed. This test 
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is performed by calculating the total rank differences of the hazardous road sections 
identified in the two periods. The less the total ranking differences, the more dependable 
is the HSID method. Again, this test is based on the assumption that no significant 
treatments are implemented on the road sections and the rankings of safety performance 
(it is important to note that each HSID method has the different estimator of safety 
performance) of each road section during the two periods remain the same. Hence, it is of 
great importance to make sure all the data outliers (i.e., road sections that are largely 
treated during Period 2) have been identified and removed, which otherwise will 
significantly influence the ranking differences and affect the corresponding results.   
 
In this report, rank gives duplicate numbers the same rank. However, the presence of 
duplicate numbers affects the ranks of subsequent numbers. For example, in a list of 
integers sorted in ascending order, if the number 7 appears twice and has a rank of 4, then 
8 would have a rank of 6 (no number would have a rank of 5). For some purposes one 
might want to use a definition of rank that takes ties into account. In the previous 
example, one would want a revised rank of 4.5 for the number 7. This can be easily done 
by adding a correction factor to the tied values and the results are expected to be similar 
to the results shown in this report. 
 
Checking again the samples in Table 13, the top 10% sections (19, 20) identified by 
frequency method (based on data in Period 1) possess the rankings of accident frequency 
(19th, 20th) in Period 1 and rankings (18th, 20 th) in Period 2, the total ranking differences 
is then 1. Whereas for the ARP method, the hazardous sections (16, 20) have the rankings 
of the ARP (19th, 20th) and rankings (13th, 20th) in the two periods respectively, and the 
resultant total ranking difference is six.  
 

False Identification Test 
 
This test has been conducted in the previous experiment design, that is, first the TPM of 
each site is specified, and then the number of FN, FP, and FI are counted. This test is also 
performed in this section due to two considerations. First, the results in the experiment 
are obtained from the simulated data, which are based on a series of strong assumptions, 
whereas the number of false identifications in the real world is not explored. Second, this 
test is the basis of the subsequent test to be described, and it would be easier for the 
readers to understand the next test with being familiar with the mechanics of this test. As 
shown in the previous experiment design, a very important issue of this test is how to 
identify the truly hazardous and safe locations. Considering crash counts in most road 
sections can be fit by Poisson distribution and the sample mean is the unbiased estimator 
of the Poisson parameter λ, this section of the report assumes the mean of the 3-year 
crash data as the TPM and the road sections with higher TPM are considered as 
hazardous locations. Obviously, great cautions should be taken to the results since the 
sample size (3) is too small, and the more accurate results are expected with longer crash 
history being used (it is important to note that too long of a crash history would also 
reduce the accuracy of the estimator since more influential factors are expected, such as 
change of driving population, police enforcement effects, etc.).  
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The last column of Table 13, 3-year crash mean, represents the TPM of each road section. 
Based on the ranking of these TPMs, it is known that Sites 18 and 20 are truly top 10% 
hazardous locations, and the rest are truly safe sites. For the accident frequency method, 
Site 18 in Period 1 (with a recorded crash count of 11) is viewed as safe, and the two sites 
in Period 2 are correctly identified, thus the number of false negatives for the accident 
frequency method in both periods is 1. Similarly, the truly safe Site 19 in Period 1 is 
viewed as hazardous, and the number of false positives for the accident frequency method 
in both periods is also 1. The corresponding number of false identifications is then 2. 
Whereas for the accident rate method, Site 18 in Period 1 (the associated rate is 1.733) 
and Site 20 in Period 2 (the associated rate is 3.138) are considered as safe, the total 
number of false negatives in the two periods is then 2. It is easy to know that the number 
of false positives and identifications are 2 and 4 respectively. The number of false 
negative, positives, and identifications for the EB and the ARP methods are both (1, 1, 2).  
 
False True Poisson Mean Differences Test 
 
The previously described false identification test uses the number of false negatives and 
false positives to assess the performances of various HSID methods. One disadvantage of 
this test is that each false identification is counted equally and does not reflect the 
different consequences resulting from various false identifications. This disadvantage can 
be seen in a simple example. If a site with a TPM value of 15.6 is wrongly selected for 
treatment instead of one with a TPM of 15.7, the “error” is really rather small; whereas if 
the site with a TPM of 15.6 is mistakenly selected instead of one with a TPM of 25.6, the 
“error” is much larger. The TPM differences associated with the two false identifications 
are 0.1 and 10 respectively, showing the big difference. To obviate this drawback, a false 
true Poisson mean differences test is designed to differentiate various false identifications 
and show more clearly the serious consequences brought by the erroneous identifications. 
The corresponding judgment indicator is the sum of the absolute difference of TPM 
associated with the false identified sites and “critical” TPM which separates the truly safe 
and hazardous locations. 
 
It is easy to describe the mechanics of this test after describing the procedures of the false 
identification test. First, the thresholds of 0.90 and 0.95 used to divide the TPM 
cumulative distributions are specified as the “critical” TPMs. Second, when a false 
negative or false positive is created, the TPM of the mistakenly identified site is 
compared to the “critical” TPM and the absolute difference is calculated. Finally, all the 
TPM differences of different false identifications across alternate HSID methods are 
summed. The method which yields the smallest TPM differences is preferred. 
 
It is known from the Table 13 that the “critical” TPM of the top 10% truly hazardous 
road section is 14. The false identification test results show that the accident frequency 
method results in one false negative (Site 18) and one false positive (Site 19) in the two 
periods. Thus, the TPM differences of false negative and positive of the accident 
frequency method are 0 and 0.67 (absolute value of 13.33-14) respectively. The value of 
0 is obtained due to the fact that the TPM of the false negative (Site 18) is used as the 
“critical” TPM. The effect of this flaw diminishes quickly with the number of false 
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negatives increasing. The total TPM differences of false identifications are then 0.67 
(0+0.67). Whereas for the accident rate method, the Site 18 in Period 1 and Site 20 in 
Period 2 are false negatives and Site 19 in both periods are false positives. The relative 
TPM differences of false negatives and false positives are 1.33 (15.33-14+0) and 1.34 
(0.67*2), and the total TPM differences of false identifications are 2.67 (1.33+1.34). 
Following the same way, it is easy to know the TPM differences of false negatives, 
positives, and identifications for the EB and the ARP methods are both (0, 0.67, 0.67). 
 

COMPARISON RESULTS 
 
To compare the relative performance of the alternative HSID methods, the five tests 
mentioned above are conducted. Test results of the nine classifications of road sections 
are first documented, and then the aggregate results are computed. In addition to the five 
tests, the similarity of the identification results of these HSID methods is also explored. 
The similarity is obtained by counting the common locations identified by various 
methods. In contrast to the previous experiment design, only top 10% and 5% locations 
are considered hot spots in this section. The case of top 1% hazardous locations is not 
explored due to the relative small sample size of each classification of road sections. The 
accumulated evaluation results of all the road sections are illustrated in Tables 14 through 
20, and the assessment results of each of the nine classifications of road sections are 
shown in Appendix D.  
 

Site Consistency Test Result 
 
Table 14: Results of Site Consistency Test of Various Methods for All Classifications 

of Highways: Accumulated Crashes for Hot Spot Sites for Various Methods 
 

δ = 0.90 δ = 0.95 
Method Crashes 

(2000) 
Average 
Crashes 

(2001-2002) 

Crash 
difference 

Crashes 
(2000) 

Average 
Crashes 

(2001-2002) 

Crash 
difference 

Frequency 8276 9611 1335 5639 6303 664 
Rate 6899 7556 657 4257 4313 56 

Bayesian 8123 9603 1480 5399 6377 978 
the ARP 7314 8450 1136 5611 6260 649 

Note: 1. the ARP⎯Method of Accident Reduction Potential. 
          2. δ = 0.90 and δ = 0.95 represents the cases of top 10% and 5% hazardous sections.  
 
As discussed previously, the crashes in the Period 2 are one measure of how unsafe the 
selected segments really are. With this said, it is known from Table 14 that the accident 
frequency method outperforms other HSID methods when identifying top 10% hot spots, 
whereas the EB method performs best in the case of  δ = 0.95. The accident rate method 
performs worst in both cases, whose corresponding hot spots experience the lowest 
number of crashes, such as 7556 and 4313 respectively.  
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Another observation revealed in Table 14 is that the EB method obtains the largest crash 
count differences (between the two periods) for both top 10% and top 5% hot spots, or, 
1480 and 978 crashes respectively.  In the case of δ = 0.90, the road sections chosen 
under the EB method, during Period 1, experience 153 (8276-8123) crashes less than 
those chosen by the frequency method, whereas in the subsequent period these two 
groups of sections have almost the same crash counts. Similarly in the case of δ = 0.95, 
the crash counts of the hot spots identified by EB rise from 5399 in Period 1 (rank 3rd 
among the four methods) to 6377 in Period 2 (rank 1st). The largest crash count difference 
indicates that the EB method has the highest ability to fight against the random effects 
associated with the observed crash counts and to select the true dangerous sites which 
tend to show the worst safety performances in the future.  
 
Therefore, considering the both observations from Table 14, it can be concluded that the 
EB method shows the best performance in this test, whose corresponding hot spots show 
the consistently worst safety performances in the future. On the contrary, the accident 
rate method performs worst among the four methods. Referring to the research results 
shown in Appendix D, it is also found that the same observations follow from most of the 
disaggregate results (i.e., results for each functional classification).  
 

Method Consistency Test Result  
 

Table 15: Results of Method Consistency Test of Various Methods for All 
Classifications of Highways: Number of Sites Commonly Identified across Periods 

 
Method δ = 0.90 δ = 0.95 
Bayesian 167 (56.0%) 71 (47.3%) 

Frequency 148 (50.0%) 63 (42.0%) 
Rate 131 (44.0%) 49 (32.7%) 

the ARP 139 (46.6%) 59 (39.3%) 
Note: 1. the ARP⎯Method of Accident Reduction Potential. 
          2. δ = 0.90 and δ = 0.95 represents the cases of top 10% and 5% hazardous sections.  
         3. The number means the number of locations identified by methods in both periods; the percent in 
the parenthesis stands for the percentage of same road sections among all the hazardous sections. 
 
The results in Table 15 agree with the results in Table 14. The EB method shows again its 
superiority in terms of method consistency, and the accident rate method performs worst 
among the four methods once more. For both cases of top 10% and top 5%, the EB 
method yields the largest number of same hot spots in the two periods, or 167 and 71 
respectively. The greatest figures show the highest reliability of this method considering 
most road sections remain the same in safety performance. The accident frequency and 
the ARP methods stand between the EB and rate methods. 
 
An interesting observation from Table 15 is that the percentages of the same top 5% hot 
spots (shown in the parentheses) are consistently lower than those of top 10% hot spots 
across the four methods. This phenomenon is opposite to the original thought since the 
percentages of the two periods are expected to be similar. The reason is most likely that 
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more attention has been given to top 5% sections during Period 1 by traffic engineers, 
and the resultant treatments performed on some of the sections improve their safety and 
put them down from the top 5% lists during Period 2.  
 
The results from each individual classification of road sections are in consistent with the 
aggregate result.  
 

Total Ranking Differences Test Result 
 

Table 16: Results of Total Ranking Differences Test of Various Methods for All 
Classifications of Highways: Cumulative Ranking Differences of Hot Spot Sites 

 
Method δ = 0.90 δ = 0.95 
Bayesian 17851 10349 

Frequency 29602 15357 
Rate 34869 21212 

the ARP 32601 18787 
Note: 1. the ARP⎯Method of Accident Reduction Potential. 
          2. δ = 0.90 and δ = 0.95 represents the cases of top 10% and 5% hazardous sections.  
       
Although Table 15 shows that the difference of the number of same hot spots identified 
by various HSID methods is within 20% (the number ranges from 131 to 167 for top 10% 
hot spots, and from 49 to 71 for top 5% hot spots), the results in Table 16 exhibit the 
huge differences among the HSID methods in terms of total ranking differences of the 
hazardous locations in the two periods. In both cases of δ = 0.90 and δ = 0.95, the EB 
method reduces the total ranking differences by about 50% compared with the accident 
frequency method,  80% compared with the ARP method, and more than 100% compared 
with the accident rate method. This phenomenon means that the rankings of the safety 
performance of the hazardous sections identified by the EB method change slightly in 
between the two periods, whereas the priorities of the dangerous sections identified by 
the accident rate method vary significantly during the two periods. The results can be 
translated into the conclusion: great cautions should be taken to the accident rate method 
even though it might show good performance in other aspects, since the method itself is 
not reliable. On the contrary, the EB method possesses the highest degree of 
dependability, followed by the accident frequency method and the ARP method. Again, 
the disaggregate results are in conformance with the aggregate result.    
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False Identification Test Result 
 
Table 17: Results of False Identification Test of Various Methods for All 
Classifications of Highways: Frequency of Errors  
 

Method  δ = 0.90 δ = 0.95 
FN 153 (2.9%) 94 (1.7%) 
FP 153 (25.6%) 94 (31.3%) Bayesian 
FI 314 (5.1%) 188 (3.2%) 
FN 152 (2.8%) 91 (1.6%) 
FP 152 (25.5%) 91 (30.3%) Frequency 
FI 304 (5.0%) 182 (3.1%) 
FN 333 (6.2%) 199 (3.5%) 
FP 333 (55.9%) 199 (66.3%) Rate 
FI 666 (11.2%) 398 (6.7%) 
FN 226 (3.4%) 174(2.7%) 
FP 226 (30.9%) 174 (50.7%) the ARP 

FI 452 (6.2%) 348 (5.1%) 
Note: 1. the ARP⎯Method of Accident Reduction Potential. 
          2. δ = 0.90 and δ = 0.95 represents the cases of top 10% and 5% hazardous sections.  
          3. FN⎯False Negatives; FP⎯False Positives; FI⎯False Identifications. 
          4. The number means the number of false identifications; the percent in the parenthesis stands for the 
corresponding percentage. FN% is defined as the number of FNs divided by the number of sites viewed as 
safe in various periods; FP% is defined as the number of FPs divided by the number of sites viewed as safe 
in various periods; FI% is defined as the number of FIs divided by all the number of sites. 
 
One observation of Table 17 is that the results show the similar characteristics to those of 
a previous experiment design. That is, the percentage of false negatives and the 
percentage of false positives have the converse trend with increasing δ for the four HSID 
methods, and the false identifications go the same direction to the false negatives with the 
increase of the value of δ.  
 
There is very slight performance difference between the accident frequency method and 
the EB method. The accident frequency method reduces the three percentages in the two 
levels of δ by less than 3% compared with the EB method. Compared with these two 
methods, the accident rate method yields many more false negatives and false positives, 
increasing the three percentages by more than 100%.  The ARP method stands in 
between the three methods.  
 
It is noteworthy that these results are obtained based on only 3-year crash data, in which 
the mean of the 3-year crashes is assumed as the true Poisson mean of the crash count of 
each road section. Combined with the previous experiment results, which use the mean of 
30 simulated data following Poisson distribution as TPM, it is expected that the EB 
method would outperform the accident frequency method with longer crash history used.  



 55

False True Poisson Means Differences Test Result 
 
Table 18: Results of False True Poisson Means Differences Test of Various Methods 
for All Classifications of Highways: Cumulative Difference in TPMs 
 

Method  δ = 0.90 δ = 0.95 
FN 1141.5 (7.46) 1097.3 (11.67) 
FP 1271.3 (8.31) 1169.7 (12.44) Bayesian 
FI 2412.8 (7.68) 2267.0 (12.06) 
FN 1041.4 (6.85) 858.9 (9.44) 
FP 1279.0 (8.41) 1168.8 (12.84) Frequency 
FI 2320.4 (7.63) 2027.7 (11.14) 
FN 4164.7 (12.54) 3175.5 (15.96) 
FP 2549.4 (7.66) 2378.2 (11.95) Rate 
FI 6714.1 (10.08) 5553.7 (13.95) 
FN 1047.5 (4.63) 1017.0 (5.84) 
FP 1465.6 (6.48) 1358.5 (7.81) the ARP 

FI 2513.1 (5.56) 2375.5 (6.83) 
Note: 1. the ARP⎯Method of Accident Reduction Potential. 
          2. δ = 0.90 and δ = 0.95 represents the cases of top 10% and 5% hazardous sections.  
          3. FN⎯False Negatives; FP⎯False Positives; FI⎯False Identifications. 
          4. The values in the parentheses represent average true Poisson mean difference per erroneous 
identification. 
 
From the results in Table 18, it is shown that the accident rate method performs 
significantly worse than the other three methods. There are relatively small differences 
among the false TPMs associated with the accident frequency method, the EB method, 
and the ARP method. In the two levels of δ, the accident frequency method yields the 
smallest TPM differences associated with false negatives and false identifications. The 
EB method obtains the smallest TPM differences associated with false positives when 
identifying top 10% hazardous sections. 
 
A very interesting observation is that although the TPM differences resulting from the 
ARP method are slightly larger than those from the accident frequency method, its 
number of false identifications (shown in Table 17) is much larger than those of the 
accident frequency method. This indicates that the ARP method yields the lowest average 
TPM difference per erroneous identification (shown in the parentheses), that is, each false 
identification resulting from the ARP method has only slight consequences. 
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Result of Similarity of Alternative HSID Identification Methods 
 
Table 19: Accumulated Similarity of Various Methods for All Classifications of 
Highways (δ = 0.90)  
 
 Bayesian Frequency Rate the ARP1 
Bayesian  246 (82.6%) 130 (43.6%) 224 (75.2%) 
Frequency 246 (82.6%)  177 (59.4%) 265 (88.9%) 
Rate 130 (43.6%) 177 (59.4%)  189 (63.4%) 
the ARP1 224 (75.2%) 265 (88.9%) 189 (63.4%)  
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 90% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
Table 20: Accumulated Similarity of Various Methods for All Classifications of 
Highways (δ = 0.95) 
 
 Bayesian Frequency Rate the ARP1 
Bayesian 1 123 (82.0%) 52 (34.7%) 111 (74.0%) 
Frequency 123 (82.0%) 1 77 (51.3%) 135 (90.0%) 
Rate 52 (34.7%) 77 (51.3%) 1 74 (49.3%) 
the ARP1 111 (74.0%) 135 (90.0%) 74 (49.3%) 1 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
         2: The number means the number of locations identified by both methods as upper 95% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
Upon reviewing both the accumulated (see Tables 19~20) and disaggregated (see 
Appendix D) results of identification similarities of the HSID methods, the following 
conclusions can be obtained. 
 
First, EB, ARP, and accident frequency methods yield the higher similarities among their 
identification results. Overall, around 82% of the hot spots identified by the EB method 
are the same as those flagged by the accident frequency method, and about 75% of them 
are same as the hazardous locations screened out by the ARP method. By contrast, 
accident rate method identified the total different hot spots. In most cases, more than 50% 
of the identified hot spots are different from those identified by the other three methods. 
It is indicated that, if the EB method is considered as the best HSID method as shown in 
the results of the previous tests and experiment design, many cautions should be given to 
the hot spots identified by the accident rate method. 
 
Second, the relative high similarity between the EB method and ARP method indicates 
that many locations are expected to have not only higher expected crashes, but also 
higher accident reduction potentials. This makes it feasible to jointly use the criteria of 
crash number and accident reduction potential to screen the hazardous locations from the 
road network.  
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CONCLUSIONS AND RECOMMENDATIONS   
 
Upon reviewing the previous results the following conclusions and recommendations are 
made: 
 

1. The EB method outperforms the other three HSID methods under the site 
consistency test. The road sections identified by the EB method possess relatively 
small numbers of crash counts in Period 1 (“current” period), whereas these 
sections show very high numbers of crash counts in Period 2 (“future” period). 
The highest crash count difference in the two periods demonstrates that the EB 
method is efficient in identifying truly hazardous sections, which show serious 
safety problems in the future period. On the contrary, the accident rate method 
identifies dangerous sections having both the smallest number of crash counts in 
Period 2 and the fewest crash count difference in the two periods. The EB method 
is followed by the accident frequency method and the ARP method. 

2. The EB method is superior to the other three methods in terms of method 
consistency. The same hot spots in both periods identified by the EB method 
make up 56% of all the top 10% sections and 47.3% of the top 5% sections. The 
EB method is followed by the accident frequency method, the ARP method, and 
the accident rate method.  

3. Compared with the method consistency test, the total ranking differences test 
shows a larger advantage associated with the EB method. In both cases of δ = 
0.90 and δ = 0.95, the EB method reduces the total ranking differences by about 
50% compared with the accident frequency method, 80% compared with the ARP 
method, and more than 100% compared with the accident rate method. The results 
show that the accident rate method is not reliable and much caution should be 
taken to use this method even though it maybe shows good performance in other 
aspects. On the contrary, the EB method possesses the highest degree of 
dependability.  

4. In the false identification test, there is a very slight difference between the 
accident frequency method and the EB method. Compared to these two methods, 
the accident rate method yields more false negatives and false positives, 
increasing the three percentages by more than 100%.  The ARP method 
performed in between these three methods. Considering the 3-year crash history 
used, it is expected the EB would outperform the accident frequency method 
when a longer crash history is used. 

5. In the false true Poisson mean differences test, there are small differences among 
the total false TPMs associated with the accident frequency method, the EB 
method and the ARP method. However, the ARP method yields the lowest 
average TPM difference per erroneous identification, indicating that each false 
identification resulting from the ARP method has the slightest consequences. 
Conversely, the false identification caused by the accident rate method has the 
most serious consequences. 

6. Overall, on the basis of Arizona 3-year road section crash data, the EB method 
exhibits the best performance under most of the five evaluation tests. By contrast, 
the accident rate method performs badly in all the five tests, the accident 
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frequency method and the ARP method perform between the two methods, and 
the former one performs slightly better than the latter. Therefore, it is strongly 
recommended that EB be used when conducting HSID within Arizona in the 
future. 

7. The EB method identifies the largest number of same hot spots as those identified 
by the accident frequency method. Overall, more than half of the hot spots 
identified by the accident rate method are different from those resulting from the 
other three HSID methods. 
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CHAPTER VI - HSID IN CURRENT ALGSP MODEL AND 
RECOMMENDED SOFTWARE CHANGES 

 
Due to limited time and resource constraints and the extensive number of candidate sites 
requiring evaluation, it is impractical for agencies to examine all sites in detail. As a 
result, much emphasis is placed on the stage of hazardous site identification. On the basis 
of the previous literature review on HSID methods and thorough statistical analyses, 
some software changes are identified which can improve the ability of ALGSP model to 
accurately identify hazardous locations. These recommended changes, which include data 
requirements, analytical method enhancements, crash analysis period changes, etc., are 
provided following the description of the logic of HSID in current ALGSP model.   
 

HSID IN CURRENT ALGSP MODEL 
 
This section aims to familiarize the readers with the mechanics and procedures of HSID 
within the ALGSP model. According to the final report prepared by Carey (2001), hot 
spot identification is one main component of the current ALGSP model and it can be 
shown in the dashed rectangle shown in Figure 9.  
 

 
 

Figure 9: Key Steps of ALGSP Model 
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HSID is conducted based on two sub-procedures. First, the crashes occurring on the large 
amount of candidate road sections are divided into different subgroups with respect to 
users’ specified selection parameters. Second, the road sites where each subgroup of 
crashes occur are examined to screen out the corresponding hot spots by using the four 
alternative weighting methods provided by the ALGSP model.  
 
The allowable user-specified selection parameters in the ALGSP model include: 
 

• Jurisdiction: This selection parameter allows users to specify the jurisdiction level 
of analysis, for example, county level or city/town level. When conducting county 
level analysis, the option is given to users to specify whether to include the 
sublevels (i.e., cities and towns) in the county. 

• Period of Analysis: This option allows users to specify the start and end dates of 
crash analysis. In this model, all annualized data outputs are converted to whole-
year values. 

• Alcohol Involvement: Sometimes the involvement of alcohol relevant crashes 
would lead to the misleading information regarding remedial treatments selections. 
This option allows users to include or exclude the alcohol and drug-related crashes 
from the analysis in terms of studies of different purposes.  

• Location Reference: The model provides four options for identifying a crash site, 
such as route-specific, junction-specific, junction–specific (junction), and junction–
specific (intersection), all of which rely on cross streets to identify the reference 
point, rather than the milepost method. The cross street reference method suffers to 
some difficulties, for example, the lack of uniform geographical coordinates for site 
positioning, the infeasibility of the floating segment length, and so on. 

• Distance (Radius): This selection parameter allows users to select the aggregation 
distance in terms of the specified location reference method. Any distance between 
0 feet and 1 mile is optional, and an unlimited distance option is also available.  

 
The four weighting methods used to prioritize hazardous locations within each subgroup 
are outlined as follows: 
 

• Total incidence method: This method is used to rank sites for prioritization 
according to the number of crashes recorded. 

• Total fatalities method: This method is used to rank sites for prioritization 
according to the number of fatal crashes recorded. 

• Total fatalities and injuries method: This method is used to rank sites for 
prioritization according to the number of fatal crashes recorded. 

• Severity-weighted method: This method is similar to the total fatalities and 
injuries method, except that the relative difference of severity in terms of crash 
costs is also considered. 
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RECOMMENDED SOFTWARE CHANGES  
 
The allowable user-specified selection parameters provide much convenience to the 
software users to conduct analysis on the crash data, and the four weighing methods 
employed to rank sites for prioritization are straightforward. 
  
However, based on the comprehensive literature review and comparison of alternate 
HSID methods, it is known that the algorithms for conducting HSID in the current 
ALGSP model allow some room for improvement. The corresponding recommended 
software changes to enhance its identification capability are outlined as follows. 
 

Incorporating the Functional Classification as an Additional User Selection 
Parameter 
 
The current selection parameters allow the software users to include or exclude the alco-
hol and drug-related crashes, to focus on the intersection-related crashes or the crashes on 
the road segments, to specify the crash history for analysis, and to specify the jurisdiction 
level. These parameters help the users to classify the crash data into alternate groups and 
are thus very convenient for doing studies of different purposes. However, considering 
the design criteria and level of service vary significantly according to the function of the 
highway facility, it is strongly recommended to embed the function classification of road 
entities as an additional user selection parameter. It is expected that grouping the crash 
data in this way would decrease much variation among the crash data and then increase 
the identification accuracy. In addition, the classification of crash data in this way can 
help the local governments (which have some problems of getting the required crash 
information) to perform the EB analysis of crash data (see the next two subsections). 
 

Data Interface Improvement 
 
It is suggested that additional data be incorporated into data files included with the cur-
rent ALGSP model. For example, traffic counts are an optional data element in the soft-
ware and are recommended after priority ranking has been established. From the former 
analyses it is known that exposure information (e.g., traffic counts, AADT, VMT, etc.) – 
perhaps the most important factor influencing road safety – is very important for develop-
ing accurate safety performance functions of various road entities. It also serves as the 
basis of EB implementation. Other valuable information required by sophisticated appli-
cation includes shoulder width, width of lane, posted speed limits, number of lanes, etc.  
 
A noteworthy point is that obtaining the somewhat detailed data may be problematic for 
local governments currently. In this case, the Bayesian correction based on the sample 
moments method is suggested to be performed to obviate the RTM biases, in which only 
the recorded crash number of the similar sites is required. The more common traits shared 
by the similar sites, the more accurate the identification result will be. Therefore, 
implementation of this type of the EB analysis requires at least that the software can 
group the road sites in terms of functional classification, and by various subcategories 
within functional classification if possible.  
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Exploring the Relationship between Exposure and Safety as Employed in the 
ALGSP 
 
The exploration of the relationship between exposure and safety is recommended due to 
its significance in the implementation of Bayesian techniques. The relationship will be 
used to determine the expected crash counts of the reference population and it is likely to 
be non-linear across the different functional classifications of road sites. Although the 
Arizona road segment SPFs within this report can be used as an optional input for the 
ALGSP, they would need to be updated at some future time (they represent year 2000 
data). These models should be updated regularly (e.g. every five years) by using more 
current data when conducting HSID. In addition, the relationships of traffic exposure and 
safety of Arizona intersections are not explored in this report and would need to be 
developed.  
 
Incorporation of the EB Techniques to Calculate the Expected Crash Number 
 
The experiment design demonstrates that under a range of practical conditions, the EB 
method offers around 50% reductions in the percentages of false positives and false 
negatives compared to CI and SR methods. By using SPFs of Arizona road sections, the 
EB method outperforms the accident frequency method, accident reduction potential 
method, and the accident rate method in most of the five evaluation tests based on 3-year 
crash data by showing the best site and method consistency, possessing the least total 
ranking differences, and yielding the least false identifications. Therefore, considering the 
great advantages associated with the EB method which can ensure that subsequent 
resources are directed to the truly hazardous locations, it is strongly recommended that 
the EB techniques be embedded in the current ALGSP model even though the additional 
resources are required to support data needs as well as the software modifications.  
 
As mentioned previously, there are two kinds of EB techniques: the multivariate 
regression-based EB technique and the sample moments-based EB technique. Both are 
proved to obviate the RTM biases to some extent (the regression method is more accurate 
but requires more data). For the traffic agencies which have the detailed crash 
information available, it is suggested to use the multivariate regression method, whereas 
for the local governments which have problems collecting the required crash data, the 
method of sample moments is suggested. The corresponding flowchart of conducting EB 
analysis is shown in Figure 10. 
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Figure 10: The Flowchart of Conducting EB Analysis 

 

Incorporation of Accident Reduction Potential Method 
 
Currently one of the disputes about road safety issue remaining unresolved is regarding 
which kind of sites should be identified as the hot spots, the sites with large expected 
crash counts or sites with high accident reduction potential. The practice to identify sites 
possessing large numbers of crashes on the road network is based on the assumption that 
the application of subsequent remedial treatments on the identified sites is to decrease the 
expected crash counts and/or severity by some fixed proportion (Hauer, et al., 2002). This 
assumption is echoed in the general usage of accident reduction factors (ARFs) to 
calculate the safety benefit of countermeasures, which is also the logic employed by 
ALGSP. Whereas the underlying assumption of employing the ARP value to screen out 
the hazardous locations is that the implementation of remedial treatments is to decrease 
the excess of the expected accident count and/or severity over what is ‘normal’ at similar 
sites (Hauer, et al., 2002). It follows that only the excess is reducible and it is more 
reasonable from the practical point of view.  
 
Up to now there is lack of consensus on which criterion in general (or in some cases) is 
better than another for judging HSID methods. Hence, the hot spots resulting from the 
sole usage of either of the standards thus might be subject to the potential waste of 
investment. In addition, the results in chapter V indicate that each false identification 
resulting from the ARP method has the slightest consequences than those brought by the 
other three HSID methods such as the accident frequency method, the accident rate 
method, and EB method. Therefore, it is recommended that in addition to the 
incorporation of EB techniques to compute the expected crash count at selected sites (e.g. 
intersections or segments), the accident reduction potential should also be incorporated 
into the ALGSP as an additional weighting method to prioritize hazardous sites. It is 
expected that the remedial treatments applied to the sites showing both the high number 
of expected crash counts and the high ARP value would yield higher benefits.  
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The computation of the accident reduction potential is based on the expected crash 
number of specific sites and the associated reference population. Hence, similar to the EB 
technique, there are also two types of the ARP methods, or the method of sample 
moments and the multivariate regression method. The corresponding flowchart for 
calculating the accident reduction potential is illustrated in Figure 11. 

 
Figure 11: The Flowchart of Computing Accident Reduction Potential 

 

Incorporation of the EB Techniques to Calculate the Expected Crash Costs 
 
The severity-weighted method in the current ALGSP model offers software users the 
difference of severity in terms of crash costs. However, the crash costs are computed 
simply as the production of the observed number of crashes of various severities and the 
crash cost estimates of different severity levels, and thus is subject to the RTM bias. 
Considering the consistent advantages associated with the EB techniques, it is 
recommended that the EB techniques be used to compute the expected crash costs in the 
ALGSP in the future. Again, the method of sample moments can be used to compute the 
number of crashes of different levels of severity when the crash information is limited, 
and the multivariate regression method is suggested if the data requirement is satisfied. A 
noteworthy point is that simultaneity should be considered in some cases when 
developing the corresponding SPFs (Quyang, et al., 2002; Ladron, et al., 2004) in the 
sense that the crashes of different severities might share common characteristics. 
However, this correction is not mandatory and may be beyond the general level of 
capability at most DOTs and agencies wishing to implement the software.  
 

Recommended Period of Analysis for Software Users 
  
This recommendation is unrelated to the ALGSP model, but it is outlined herein due to 
the significant impacts of crash analysis on the accuracy of results. The experiment 
results show that 3-year crash histories represent the largest portion of the “best” study 
period of crash history, and 3 through 6 years make up almost 90% of all the optimum t-
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years. Hence, as the trade-off between the long and short histories, if there is no 
significant physical change in the location under securitization, it is suggested that the 
most recent 6-years of crash records is sufficient for the ALGSP model to capture the 
majority of the beneficial effect of the crash history. By contrast, 3-years of crash history 
data represent the ‘shortest’ period of time that should be used. Crash histories of 1 and 2 
years provide relatively little benefit in most situations. Plus, it is important to note that 
Hazard Elimination Projects (HES) eligibility guidelines require that data from a period 
of at least 3 years be included in the site analysis. 
 
While much of this research is focused on improving the ALGSP, it is worth noting that 
the ALGSP already incorporates many useful algorithms and information that will aid 
local jurisdictions in identifying hot spots. These include but are not limited to the 
inclusion of numerous crash modification factors associated with engineering 
countermeasures, the ability to upload crash data, the inclusion of costs of numerous 
countermeasures, and the ability to conduct cost-benefit analyses. The addition of 
Bayesian techniques and other recommended changes within the ALGSP software 
represents a small portion of the capabilities of the software and the enormous effort 
invested to date in the software.   
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APPENDIX A: REAL ARIZONA CRASH DATA USED FOR THE 
DEVELOPMENT OF SIMULATED CRASH DATA 

 
In the Section III of this report, it is known that real Arizona crash data are required for 
the development of simulated crash data used in the experiment design. The six datasets, 
which represent the crash counts from intersections in six counties of Arizona, are shown 
in this appendix. Tables 21~26 present the frequency and cumulative percentage of 
observed crash count from each county. Figures 12~17 illustrate the empirical cumulative 
distribution of each dataset. It is noticeable that the six distributions follow into three 
kinds of shapes (i.e., exponential, linear, and “s” shapes) and the crash counts show the 
two levels of heterogeneity.  
  
 

Table 21: Observed Data from Apache (E1) 

Note: x=observed crash count; n(x) =number of sites with count x; CDF=cumulative % of data observed 
with crash count ≥ x. 
 
 

Table 22: Observed Data from Gila (E2) 
 
x 2 4 5 6 8 9 11 13 15 16 17 18 19
n(x) 2 4 3 2 4 1 5 4 4 2 4 4 2
CDF 2 6 8 10 14 15 21 25 28 29 33 37 39
x 21 23 24 26 27 28 29 31 32 33 34 35 36
n(x) 3 3 2 3 1 3 3 2 1 1 2 1 2
CDF 42 45 47 50 51 54 57 59 60 61 63 64 66
x 37 38 39 40 41 42 46 48 49 52 53 54 55
n(x) 2 3 3 3 2 1 4 3 1 2 2 1 2
CDF 68 69 72 75 77 78 82 85 86 88 90 91 93
x 56 57 62 66 72                
n(x) 1 1 2 2 1                
CDF 94 95 97 99 100                
Note: x=observed crash count; n(x) =number of sites with count x; CDF=cumulative % of data observed 
with crash count ≥ x. 

x 1 2 3 4 5 7 8 9 11 12 14 15 19
n(x) 10 13 10 14 17 20 13 11 11 6 7 4 6
CDF 7 16.2 23.2 33.1 45.1 59.2 68.3 76.1 83.8 88 93 95.8 100
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Table 23: Observed Data from Graham (L1) 

 
x 1 2 3 4 5 6 7 8 9 10 11 14 15
n(x) 5 4 3 8 7 4 5 6 3 9 5 4 5
CDF 7.0 12.7 16.9 28.2 38.0 43.7 50.7 59.2 63.4 76.1 83.1 88.7 95.8
x 16                        
n(x) 3                        
CDF 100.0                        
Note: x=observed crash count; n(x) =number of sites with count x; CDF=cumulative % of data observed 
with crash count ≥ x. 
 

Table 24: Observed Data from Lapaz (L2) 
 
x 4 5 7 8 9 12 14 15 16 17 18 19 21
n(x) 1 2 1 1 2 3 1 1 2 4 1 2 3
CDF 1 3 4 5 7 10 11 12 14 18 19 21 24
x 23 24 25 26 27 29 30 31 32 34 35 36 37
n(x) 1 2 7 3 2 1 1 2 6 4 5 1 2
CDF 25 27 34 37 39 40 41 43 49 53 58 59 61
x 38 43 45 47 49 51 52 55 57 59 61 62 64
n(x) 2 7 3 2 2 1 1 2 1 2 1 1 3
CDF 63 70 73 75 77 78 79 81 82 84 85 86 89
x 68 69 70                    
n(x) 1 1 1                    
CDF 90 91 92                    
Note: x=observed crash count; n(x) =number of sites with count x; CDF=cumulative % of data observed 
with crash count ≥ x. 
 
 

Table 25: Observed Data from Pima (S1) 
 
x 1 2 3 4 5 6 7 8 9 10 11 13 14
n(x) 3 3 1 3 15 19 22 20 24 20 8 6 10
CDF 1.8 3.6 4.2 6 15 26.3 40 51.5 65.9 77.8 82.6 86.2 92.2
x 15 17 18                    
n(x) 7 3 3                    
CDF 96.4 98.2 100                    
Note: x=observed crash count; n(x) =number of sites with count x; CDF=cumulative % of data observed 
with crash count ≥ x. 
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Table 26: Observed Data from Santacruz (S2) 
 
x 1 2 4 5 6 7 8 9 10 11 13 14 15
n(x) 1 2 1 2 1 2 1 1 5 4 5 6 8
CDF 0.9 2.6 3.4 5.1 6 7.7 8.5 9.4 13.7 17.1 21.3 26.5 33.3
x 16 17 18 21 23 24 25 27 28 29 31 33 34
n(x) 7 5 3 3 4 6 4 4 2 3 2 4 3
CDF 39.3 43.6 46.2 48.7 52.1 57.3 60.7 64.1 65.8 68.4 70.1 73.5 76.1
x 35 36 38 40 41 43 44 46 48 52 57 61  
n(x) 5 3 3 4 2 3 1 2 2 1 1 1  
CDF 80.3 82.9 85.5 88.9 90.6 93.2 94 95.7 97.4 98.3 99.1 100  
Note: x=observed crash count; n(x) =number of sites with count x; CDF=cumulative % of data observed 
with crash count ≥ x. 
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Figure 12: Empirical Cumulative Distribution of Dataset One (E1) 
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E2 (104 sites)
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Figure 13: Empirical Cumulative Distribution of Dataset Two (E2) 
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L1 (71 sites)
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Figure 14: Empirical Cumulative Distribution of Dataset Three (L1) 
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L2 (92 sites)
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Figure 15: Empirical Cumulative Distribution of Dataset Four (L2) 
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S1 (167 sites)
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Figure 16: Empirical Cumulative Distribution of Dataset Five (S1) 
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S2 (117 sites)
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Figure 17: Empirical Cumulative Distribution of Dataset Six (S2) 
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APPENDIX B: THE IDENTIFICATION ERROR RATES 
ASSOCIATED WITH VARIOUS HSID METHODS, CONFIDENCE 

LEVELS, AND GROUPS  
 
It is known from chapter III that the identification error rate is employed as the indicator 
to explore the best study duration for crash data analysis. Various “t” years are plotted 
against the associated identification error rate and the “knee” of the curve would be 
identified as the optimal study period. This appendix presents the three kinds of 
identification error rates (FN, FP, and FI) of the different “t” years across the three HSID 
methods, three confidence levels and three groups, which are shown in Tables 27~53.  
    

Table 27: The Identification Error Rates of SR Method for Group 1 (δ = 0.90) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 3.80 2.85 2.32 2.13 1.83 1.73 1.67 1.70 1.67 1.33

FP 34.20 25.67 20.88 19.14 16.50 15.60 15.00 15.33 15.00 12.00E1 
FI 6.84 5.13 4.18 3.83 3.30 3.12 3.00 3.07 3.00 2.40

FN 2.17 1.46 1.28 1.10 0.89 0.78 0.58 0.52 0.50 0.56

FP 19.50 13.11 11.50 9.86 8.00 7.00 5.25 4.67 4.50 5.00E2 
FI 3.90 2.62 2.30 1.97 1.60 1.40 1.05 0.93 0.90 1.00

FN 4.20 3.26 2.75 2.49 2.22 1.93 1.92 1.74 1.61 1.67

FP 37.80 29.33 24.75 22.43 20.00 17.40 17.25 15.67 14.50 15.00L1 
FI 7.56 5.87 4.95 4.49 4.00 3.48 3.45 3.13 2.90 3.00

FN 2.54 2.00 1.63 1.59 1.46 1.31 1.28 1.15 1.06 1.11

FP 22.90 18.00 14.63 14.29 13.17 11.80 11.50 10.33 9.50 10.00L2 
FI 4.58 3.60 2.93 2.86 2.63 2.36 2.30 2.07 1.90 2.00

FN 6.36 5.43 4.88 4.68 4.43 4.09 3.94 3.85 3.56 3.33

FP 57.20 48.89 43.88 42.14 39.83 36.80 35.50 34.67 32.00 30.00S1 
FI 11.44 9.78 8.78 8.43 7.97 7.36 7.10 6.93 6.40 6.00

FN 2.79 2.31 2.04 1.86 1.76 1.64 1.58 1.37 1.44 1.44

FP 25.10 20.78 18.38 16.71 15.83 14.80 14.25 12.33 13.00 13.00S2 
FI 5.02 4.16 3.68 3.34 3.17 2.96 2.85 2.47 2.60 2.60

 



 81

Table 28: The Identification Error Rates of ER Method for Group 1 (δ = 0.90) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 2.47 1.73 1.53 1.51 1.44 1.31 1.31 1.19 1.22 1.22

FP 22.20 15.56 13.75 13.57 13.00 11.80 11.75 10.67 11.00 11.00E1 
FI 4.44 3.11 2.75 2.71 2.60 2.36 2.35 2.13 2.20 2.20

FN 1.19 0.83 0.67 0.59 0.54 0.60 0.47 0.48 0.50 0.56

FP 10.70 7.44 6.00 5.29 4.83 5.40 4.25 4.33 4.50 5.00E2 
FI 2.14 1.49 1.20 1.06 0.97 1.08 0.85 0.87 0.90 1.00

FN 3.03 2.40 2.13 2.00 1.85 1.87 1.78 1.78 1.72 1.67

FP 27.30 21.56 19.13 18.00 16.67 16.80 16.00 16.00 15.50 15.00L1 
FI 5.46 4.31 3.83 3.60 3.33 3.36 3.20 3.20 3.10 3.00

FN 1.87 1.41 1.36 1.29 1.28 1.20 1.08 1.04 1.06 1.11

FP 16.80 12.67 12.25 11.57 11.50 10.80 9.75 9.33 9.50 10.00L2 
FI 3.36 2.53 2.45 2.31 2.30 2.16 1.95 1.87 1.90 2.00

FN 5.39 4.75 4.33 4.11 4.02 3.91 3.92 3.81 3.61 3.33

FP 48.50 42.78 39.00 37.00 36.17 35.20 35.25 34.33 32.50 30.00S1 
FI 9.70 8.56 7.80 7.40 7.23 7.04 7.05 6.87 6.50 6.00

FN 2.08 1.81 1.65 1.59 1.56 1.51 1.08 1.41 1.33 1.44

FP 18.70 16.33 14.88 14.29 14.00 13.60 9.75 12.67 12.00 13.00S2 
FI 3.74 3.27 2.98 2.86 2.80 2.72 1.95 2.53 2.40 2.60
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Table 29: The Identification Error Rates of CI Method for Group 1 (δ = 0.90) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 2.70 2.50 2.02 1.57 1.21 1.14 1.03 1.15 1.00 0.89

FP 62.06 35.51 28.06 27.03 24.84 22.94 24.02 21.90 20.59 25.49E1 
FI 7.47 5.87 4.68 4.17 3.62 3.36 3.38 3.27 3.00 3.40

FN 1.81 1.15 1.08 0.67 0.60 0.61 0.51 0.37 0.51 0.56

FP 25.00 18.23 13.96 11.71 9.46 8.65 8.11 7.21 6.31 8.11E2 
FI 4.22 2.99 2.51 1.90 1.58 1.50 1.35 1.13 1.15 1.40

FN 2.28 2.91 2.56 2.28 1.81 1.55 1.27 1.15 1.11 1.11

FP 104.29 46.67 33.16 29.88 26.70 24.29 24.23 24.15 23.47 22.45L1 
FI 8.71 6.86 5.56 4.99 4.25 3.78 3.53 3.40 3.30 3.20

FN 1.91 1.93 1.72 1.71 1.74 1.55 1.37 1.31 1.40 1.01

FP 37.61 16.10 14.37 14.29 14.49 12.90 11.45 10.90 11.68 8.41L2 
FI 5.28 3.44 3.08 3.06 3.10 2.76 2.45 2.33 2.50 1.80

FN 0.43 1.24 1.10 3.45 3.10 2.98 2.65 2.52 2.30 2.08

FP 832.73 248.25 228.21 63.95 58.91 57.21 55.23 50.78 49.42 58.14S1 
FI 9.59 9.89 9.05 8.66 7.90 7.64 7.18 6.67 6.35 6.90

FN 2.26 2.06 2.10 2.04 1.71 1.71 1.53 1.48 1.34 1.56

FP 36.41 24.94 18.01 16.81 15.20 15.29 14.22 13.07 12.75 14.71S2 
FI 5.40 4.24 3.73 3.54 3.08 3.10 2.83 2.67 2.50 2.90
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Table 30: The Identification Error Rates of SR Method for Group 1 (δ = 0.95) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 2.11 1.64 1.34 1.01 1.05 0.86 0.89 0.74 0.84 0.63

FP 40.00 31.11 25.50 19.14 20.00 16.40 17.00 14.00 16.00 12.00E1 
FI 4.00 3.11 2.55 1.91 2.00 1.64 1.70 1.40 1.60 1.20

FN 1.33 1.10 0.95 0.90 0.79 0.72 0.58 0.56 0.63 0.63

FP 25.20 20.89 18.00 17.14 15.00 13.60 11.00 10.67 12.00 12.00E2 
FI 2.52 2.09 1.80 1.71 1.50 1.36 1.10 1.07 1.20 1.20

FN 2.38 1.98 1.72 1.53 1.35 1.22 1.13 0.91 0.84 0.74

FP 45.20 37.56 32.75 29.14 25.67 23.20 21.50 17.33 16.00 14.00L1 
FI 4.52 3.76 3.28 2.91 2.57 2.32 2.15 1.73 1.60 1.40

FN 1.52 1.10 0.96 0.93 0.88 0.80 0.82 0.77 0.79 0.63

FP 28.80 20.89 18.25 17.71 16.67 15.20 15.50 14.67 15.00 12.00L2 
FI 2.88 2.09 1.83 1.77 1.67 1.52 1.55 1.47 1.50 1.20

FN 3.48 3.11 2.88 2.63 2.58 2.40 2.29 2.28 2.11 2.32

FP 66.20 59.11 54.75 50.00 49.00 45.60 43.50 43.33 40.00 44.00S1 
FI 6.62 5.91 5.48 5.00 4.90 4.56 4.35 4.33 4.00 4.40

FN 1.25 0.90 0.66 0.59 0.47 0.40 0.26 0.25 0.26 0.21

FP 23.80 17.11 12.50 11.14 9.00 7.60 5.00 4.67 5.00 4.00S2 
FI 2.38 1.71 1.25 1.11 0.90 0.76 0.50 0.47 0.50 0.40
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Table 31: The Identification Error Rates of EB Method for Group 1 (δ = 0.95) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 1.39 1.02 0.82 0.66 0.65 0.55 0.55 0.56 0.53 0.53

FP 26.40 19.33 15.50 12.57 12.33 10.40 10.50 10.67 10.00 10.00E1 
FI 2.64 1.93 1.55 1.26 1.23 1.04 1.05 1.07 1.00 1.00

FN 0.97 0.84 0.71 0.69 0.70 0.69 0.66 0.70 0.58 0.63

FP 18.40 16.00 13.50 13.14 13.33 13.20 12.50 13.33 11.00 12.00E2 
FI 1.84 1.60 1.35 1.31 1.33 1.32 1.25 1.33 1.10 1.20

FN 1.78 1.43 1.25 1.07 1.05 0.95 0.82 0.81 0.79 0.74

FP 33.80 27.11 23.75 20.29 20.00 18.00 15.50 15.33 15.00 14.00L1 
FI 3.38 2.71 2.38 2.03 2.00 1.80 1.55 1.53 1.50 1.40

FN 1.07 0.88 0.87 0.80 0.79 0.80 0.79 0.74 0.68 0.63

FP 20.40 16.67 16.50 15.14 15.00 15.20 15.00 14.00 13.00 12.00L2 
FI 2.04 1.67 1.65 1.51 1.50 1.52 1.50 1.40 1.30 1.20

FN 3.07 2.70 2.54 2.42 2.37 2.21 2.21 2.25 2.26 2.32

FP 58.40 51.33 48.25 46.00 45.00 42.00 42.00 42.67 43.00 44.00S1 
FI 5.84 5.13 4.83 4.60 4.50 4.20 4.20 4.27 4.30 4.40

FN 0.75 0.63 0.55 0.53 0.46 0.46 0.47 0.49 0.47 0.42

FP 14.20 12.00 10.50 10.00 8.67 8.80 9.00 9.33 9.00 8.00S2 
FI 1.42 1.20 1.05 1.00 0.87 0.88 0.90 0.93 0.90 0.80
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Table 32: The Identification Error Rates of CI Method for Group 1 (δ = 0.95) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 1.58 1.41 1.36 1.67 1.66 1.38 1.32 1.15 1.14 0.97

FP 82.22 50.65 38.60 24.00 22.00 20.00 16.67 19.11 17.33 16.00E1 
FI 5.43 4.33 3.69 3.34 3.18 2.78 2.48 2.50 2.35 2.10

FN 1.30 1.09 0.96 0.66 0.63 0.54 0.43 0.47 0.38 0.43

FP 35.93 20.81 15.32 14.08 13.15 11.27 11.97 12.21 11.27 11.27E2 
FI 3.39 2.43 1.98 1.61 1.52 1.30 1.25 1.30 1.15 1.20

FN 1.56 1.42 1.69 1.75 1.46 1.32 1.17 1.17 1.28 1.49

FP 109.61 71.50 50.00 35.83 30.95 26.67 28.17 24.34 23.02 25.40L1 
FI 5.72 4.64 4.33 3.90 3.32 2.92 2.88 2.63 2.65 3.00

FN 1.51 1.23 1.19 1.12 1.06 0.90 0.89 0.79 0.65 0.54

FP 35.58 19.73 15.07 11.02 7.86 8.29 5.36 6.67 7.14 5.71L2 
FI 3.64 2.46 2.14 1.81 1.53 1.42 1.20 1.20 1.10 0.90

FN 0.19 0.29 0.68 1.39 1.24 1.06 0.83 0.76 0.78 0.73

FP 1226.00 497.98 239.38 115.92 109.05 102.29 100.71 98.10 98.57 94.29S1 
FI 6.32 5.77 5.45 5.40 5.02 4.60 4.33 4.17 4.20 4.00

FN 1.19 0.81 0.70 0.76 0.76 0.83 0.93 0.85 0.91 0.85

FP 41.60 25.84 20.83 15.83 13.81 10.75 7.94 5.29 3.97 4.76S2 
FI 3.36 2.21 1.85 1.66 1.55 1.44 1.38 1.13 1.10 1.10

 



 86

Table 33: The Identification Error Rates of SR Method for Group 1 (δ = 0.99) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 0.52 0.46 0.40 0.36 0.35 0.28 0.28 0.30 0.30 0.30

FP 51.00 45.56 40.00 35.71 35.00 28.00 27.50 30.00 30.00 30.00E1 
FI 1.02 0.91 0.80 0.71 0.70 0.56 0.55 0.60 0.60 0.60

FN 0.26 0.18 0.14 0.14 0.12 0.12 0.10 0.10 0.10 0.10

FP 26.00 17.78 13.75 14.29 11.67 12.00 10.00 10.00 10.00 10.00E2 
FI 0.52 0.36 0.28 0.29 0.23 0.24 0.20 0.20 0.20 0.20

FN 0.65 0.54 0.51 0.40 0.44 0.42 0.40 0.47 0.40 0.40

FP 64.00 53.33 50.00 40.00 43.33 42.00 40.00 46.67 40.00 40.00L1 
FI 1.28 1.07 1.00 0.80 0.87 0.84 0.80 0.93 0.80 0.80

FN 0.39 0.26 0.21 0.13 0.13 0.16 0.15 0.17 0.15 0.10

FP 39.00 25.56 21.25 12.86 13.33 16.00 15.00 16.67 15.00 10.00L2 
FI 0.78 0.51 0.43 0.26 0.27 0.32 0.30 0.33 0.30 0.20

FN 0.79 0.74 0.67 0.58 0.51 0.48 0.43 0.44 0.40 0.40

FP 78.00 73.33 66.25 57.14 50.00 48.00 42.50 43.33 40.00 40.00S1 
FI 1.56 1.47 1.33 1.14 1.00 0.96 0.85 0.87 0.80 0.80

FN 0.23 0.17 0.15 0.16 0.15 0.12 0.13 0.10 0.10 0.10

FP 23.00 16.67 15.00 15.71 15.00 12.00 12.50 10.00 10.00 10.00S2 
FI 0.46 0.33 0.30 0.31 0.30 0.24 0.25 0.20 0.20 0.20
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Table 34: The Identification Error Rates of EB Method for Group 1 (δ = 0.99) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 0.37 0.29 0.25 0.22 0.22 0.22 0.23 0.24 0.20 0.20

FP 37.00 28.89 25.00 21.43 21.67 22.00 22.50 23.33 20.00 20.00E1 
FI 0.74 0.58 0.50 0.43 0.43 0.44 0.45 0.47 0.40 0.40

FN 0.15 0.22 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

FP 15.00 22.22 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00E2 
FI 0.30 0.44 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

FN 0.51 0.45 0.40 0.39 0.40 0.38 0.38 0.44 0.40 0.40

FP 50.00 44.44 40.00 38.57 40.00 38.00 37.50 43.33 40.00 40.00L1 
FI 1.00 0.89 0.80 0.77 0.80 0.76 0.75 0.87 0.80 0.80

FN 0.26 0.20 0.21 0.14 0.12 0.10 0.15 0.17 0.15 0.10

FP 26.00 20.00 21.25 14.29 11.67 10.00 15.00 16.67 15.00 10.00L2 
FI 0.52 0.40 0.43 0.29 0.23 0.20 0.30 0.33 0.30 0.20

FN 0.72 0.61 0.53 0.51 0.44 0.44 0.45 0.47 0.45 0.40

FP 71.00 60.00 52.50 50.00 43.33 44.00 45.00 46.67 45.00 40.00S1 
FI 1.42 1.20 1.05 1.00 0.87 0.88 0.90 0.93 0.90 0.80

FN 0.11 0.12 0.10 0.12 0.12 0.12 0.08 0.10 0.10 0.10

FP 11.00 12.22 10.00 11.43 11.67 12.00 7.50 10.00 10.00 10.00S2 
FI 0.22 0.24 0.20 0.23 0.23 0.24 0.15 0.20 0.20 0.20
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Table 35: The Identification Error Rates of CI Method for Group 1 (δ = 0.99) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 0.65 0.75 0.89 0.82 0.74 0.60 0.59 0.51 0.57 0.51

FP 118.99 72.19 48.56 41.80 40.74 35.56 36.11 25.93 18.52 22.22E1 
FI 2.52 2.23 2.13 1.93 1.82 1.54 1.55 1.20 1.05 1.10

FN 0.33 0.20 0.24 0.26 0.24 0.25 0.15 0.20 0.20 0.20

FP 55.67 42.41 34.66 27.67 21.01 14.40 15.22 13.04 13.04 8.70E2 
FI 1.45 1.10 1.00 0.89 0.72 0.60 0.50 0.50 0.50 0.40

FN 0.17 0.45 0.47 0.46 0.37 0.30 0.25 0.65 0.77 1.24

FP 402.00 128.43 91.07 79.59 79.76 74.29 73.21 38.98 28.89 9.68L1 
FI 2.18 1.90 1.74 1.57 1.48 1.34 1.28 1.40 1.40 1.50

FN 0.44 0.45 0.41 0.38 0.39 0.76 0.56 0.51 0.36 0.31

FP 50.52 27.86 20.11 14.63 11.35 7.26 5.77 1.28 1.92 0.00L2 
FI 1.40 1.07 0.86 0.71 0.65 0.92 0.70 0.53 0.40 0.30

FN 0.00 0.06 0.14 0.09 0.07 0.06 0.13 0.17 0.30 0.20

FP 998.72 922.22 362.16 311.43 293.33 316.00 215.38 133.33 109.09 118.18 S1 
FI 1.89 1.90 1.81 1.64 1.53 1.64 1.53 1.37 1.50 1.50

FN 0.54 0.43 0.40 0.47 0.46 0.45 0.51 0.65 0.51 0.31

FP 38.67 23.94 21.03 14.37 12.42 10.08 8.57 3.70 3.70 3.70S2 
FI 1.40 0.99 0.90 0.81 0.77 0.70 0.73 0.73 0.60 0.40
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Table 36: The Identification Error Rates of SR Method for Group 2 (δ = 0.90) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 3.42 2.77 2.63 2.40 2.15 2.04 1.83 1.70 1.39 1.56

FP 30.80 24.89 23.63 21.57 19.33 18.40 16.50 15.33 12.50 14.00E1 
FI 6.16 4.98 4.73 4.31 3.87 3.68 3.30 3.07 2.50 2.80

FN 1.99 1.35 1.14 1.03 0.80 0.78 0.67 0.67 0.67 0.67

FP 17.90 12.11 10.25 9.29 7.17 7.00 6.00 6.00 6.00 6.00E2 
FI 3.58 2.42 2.05 1.86 1.43 1.40 1.20 1.20 1.20 1.20

FN 4.68 3.36 2.86 2.59 2.26 2.09 1.89 1.89 1.83 1.78

FP 42.10 30.22 25.75 23.29 20.33 18.80 17.00 17.00 16.50 16.00L1 
FI 8.42 6.04 5.15 4.66 4.07 3.76 3.40 3.40 3.30 3.20

FN 2.66 1.86 1.49 1.46 1.43 1.33 1.17 1.11 1.11 0.78

FP 23.90 16.78 13.38 13.14 12.83 12.00 10.50 10.00 10.00 7.00L2 
FI 4.78 3.36 2.68 2.63 2.57 2.40 2.10 2.00 2.00 1.40

FN 6.51 5.51 5.29 5.05 4.41 4.36 4.14 3.78 3.72 3.22

FP 58.60 49.56 47.63 45.43 39.67 39.20 37.25 34.00 33.50 29.00S1 
FI 11.72 9.91 9.53 9.09 7.93 7.84 7.45 6.80 6.70 5.80

FN 2.89 2.07 1.93 1.81 1.63 1.44 1.36 1.19 1.22 1.22

FP 26.00 18.67 17.38 16.29 14.67 13.00 12.25 10.67 11.00 11.00S2 
FI 5.20 3.73 3.48 3.26 2.93 2.60 2.45 2.13 2.20 2.20
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Table 37: The Identification Error Rates of EB Method for Group 2 (δ = 0.90) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 2.42 1.93 1.60 1.43 1.30 1.22 1.14 1.04 1.17 1.11

FP 21.80 17.33 14.38 12.86 11.67 11.00 10.25 9.33 10.50 10.00E1 
FI 4.36 3.47 2.88 2.57 2.33 2.20 2.05 1.87 2.10 2.00

FN 1.07 0.80 0.67 0.60 0.52 0.49 0.39 0.37 0.44 0.44

FP 9.60 7.22 6.00 5.43 4.67 4.40 3.50 3.33 4.00 4.00E2 
FI 1.92 1.44 1.20 1.09 0.93 0.88 0.70 0.67 0.80 0.80

FN 2.84 2.17 1.76 1.70 1.54 1.44 1.36 1.30 1.28 1.11

FP 25.60 19.56 15.88 15.29 13.83 13.00 12.25 11.67 11.50 10.00L1 
FI 5.12 3.91 3.18 3.06 2.77 2.60 2.45 2.33 2.30 2.00

FN 1.53 1.32 1.08 1.03 1.02 0.96 0.94 0.89 0.83 0.78

FP 13.80 11.89 9.75 9.29 9.17 8.60 8.50 8.00 7.50 7.00L2 
FI 2.76 2.38 1.95 1.86 1.83 1.72 1.70 1.60 1.50 1.40

FN 5.31 4.47 4.08 3.79 3.54 3.49 3.44 3.41 3.22 3.11

FP 47.80 40.22 36.75 34.14 31.83 31.40 31.00 30.67 29.00 28.00S1 
FI 9.56 8.04 7.35 6.83 6.37 6.28 6.20 6.13 5.80 5.60

FN 1.81 1.35 1.25 1.13 1.11 1.04 1.00 1.00 0.89 1.11

FP 16.30 12.11 11.25 10.14 10.00 9.40 9.00 9.00 8.00 10.00S2 
FI 3.26 2.42 2.25 2.03 2.00 1.88 1.80 1.80 1.60 2.00

 



 91

Table 38: The Identification Error Rates of CI Method for Group 2 (δ = 0.90) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 2.50 2.97 2.41 2.18 1.65 1.45 1.31 1.34 1.00 0.89

FP 58.43 31.26 29.90 29.27 28.43 27.65 25.98 25.16 23.04 20.59E1 
FI 6.85 5.86 5.21 4.94 4.38 4.12 3.83 3.77 3.25 2.90

FN 1.80 1.75 1.42 1.32 1.18 1.26 1.10 0.97 0.96 1.01

FP 23.50 12.50 10.92 9.14 7.66 7.57 6.31 5.71 5.86 4.50E2 
FI 4.07 2.93 2.48 2.19 1.90 1.96 1.68 1.50 1.50 1.40

FN 2.17 2.60 2.74 2.34 1.90 1.91 1.69 1.55 1.44 1.44

FP 108.57 53.41 33.42 31.63 28.40 25.10 23.47 24.83 21.43 20.41L1 
FI 8.87 6.99 5.75 5.21 4.50 4.18 3.83 3.83 3.40 3.30

FN 1.97 1.80 1.60 1.44 1.33 1.25 1.20 1.08 1.18 0.90

FP 35.06 21.71 16.00 13.08 12.77 11.96 11.45 9.97 10.75 8.41L2 
FI 5.09 3.87 3.14 2.69 2.55 2.40 2.30 2.03 2.20 1.70

FN 0.68 1.29 2.04 3.12 3.01 2.89 2.74 2.37 2.19 2.19

FP 631.65 240.63 140.65 70.78 60.27 56.98 54.07 50.78 45.93 38.37S1 
FI 10.65 9.67 9.54 8.44 7.93 7.54 7.15 6.53 5.95 5.30

FN 2.26 1.88 1.97 2.05 1.78 1.71 1.61 1.60 1.50 1.34

FP 35.49 22.35 18.49 15.69 12.91 10.59 10.54 10.13 8.33 9.80S2 
FI 5.29 3.86 3.64 3.44 2.92 2.62 2.53 2.47 2.20 2.20
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Table 39: The Identification Error Rates of SR Method for Group 2 (δ = 0.95) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 1.91 1.56 1.29 1.10 1.00 0.97 0.82 0.70 0.68 0.74

FP 36.20 29.56 24.50 20.86 19.00 18.40 15.50 13.33 13.00 14.00E1 
FI 3.62 2.96 2.45 2.09 1.90 1.84 1.55 1.33 1.30 1.40

FN 1.28 1.02 0.83 0.68 0.61 0.57 0.50 0.46 0.42 0.42

FP 24.40 19.33 15.75 12.86 11.67 10.80 9.50 8.67 8.00 8.00E2 
FI 2.44 1.93 1.58 1.29 1.17 1.08 0.95 0.87 0.80 0.80

FN 2.36 1.92 1.61 1.47 1.28 1.31 1.11 1.05 0.95 0.84

FP 44.80 36.44 30.50 28.00 24.33 24.80 21.00 20.00 18.00 16.00L1 
FI 4.48 3.64 3.05 2.80 2.43 2.48 2.10 2.00 1.80 1.60

FN 1.43 1.06 0.96 0.81 0.79 0.67 0.61 0.56 0.58 0.53

FP 27.20 20.22 18.25 15.43 15.00 12.80 11.50 10.67 11.00 10.00L2 
FI 2.72 2.02 1.83 1.54 1.50 1.28 1.15 1.07 1.10 1.00

FN 3.52 3.12 2.75 2.56 2.49 2.32 2.08 2.00 1.89 1.89

FP 66.80 59.33 52.25 48.57 47.33 44.00 39.50 38.00 36.00 36.00S1 
FI 6.68 5.93 5.23 4.86 4.73 4.40 3.95 3.80 3.60 3.60

FN 1.38 0.96 0.76 0.74 1.09 0.57 0.47 0.49 0.58 0.53

FP 26.20 18.22 14.50 14.00 20.67 10.80 9.00 9.33 11.00 10.00S2 
FI 2.62 1.82 1.45 1.40 2.07 1.08 0.90 0.93 1.10 1.00
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Table 40: The Identification Error Rates of EB Method for Group 2 (δ = 0.95) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 1.34 0.99 0.87 0.75 0.70 0.65 0.58 0.60 0.58 0.53

FP 25.40 18.89 16.50 14.29 13.33 12.40 11.00 11.33 11.00 10.00E1 
FI 2.54 1.89 1.65 1.43 1.33 1.24 1.10 1.13 1.10 1.00

FN 0.86 0.65 0.51 0.44 0.37 0.38 0.37 0.35 0.32 0.32

FP 16.40 12.44 9.75 8.29 7.00 7.20 7.00 6.67 6.00 6.00E2 
FI 1.64 1.24 0.98 0.83 0.70 0.72 0.70 0.67 0.60 0.60

FN 1.74 1.30 1.01 0.99 0.91 0.88 0.82 0.81 0.84 0.74

FP 33.00 24.67 19.25 18.86 17.33 16.80 15.50 15.33 16.00 14.00L1 
FI 3.30 2.47 1.93 1.89 1.73 1.68 1.55 1.53 1.60 1.40

FN 0.91 0.71 0.68 0.62 0.56 0.51 0.45 0.46 0.42 0.42

FP 17.20 13.56 13.00 11.71 10.67 9.60 8.50 8.67 8.00 8.00L2 
FI 1.72 1.36 1.30 1.17 1.07 0.96 0.85 0.87 0.80 0.80

FN 2.92 2.40 2.07 1.94 1.79 1.81 1.71 1.65 1.63 1.68

FP 55.40 45.56 39.25 36.86 34.00 34.40 32.50 31.33 31.00 32.00S1 
FI 5.54 4.56 3.93 3.69 3.40 3.44 3.25 3.13 3.10 3.20

FN 0.73 0.48 0.39 0.35 0.26 0.23 0.21 0.28 0.26 0.21

FP 13.80 9.11 7.50 6.57 5.00 4.40 4.00 5.33 5.00 4.00S2 
FI 1.38 0.91 0.75 0.66 0.50 0.44 0.40 0.53 0.50 0.40
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Table 41: The Identification Error Rates of CI Method for Group 2 (δ = 0.95) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 1.70 1.28 1.64 2.05 1.86 1.86 1.49 1.59 1.46 1.19

FP 71.98 48.08 28.33 20.76 17.56 13.87 11.33 9.33 7.33 4.00E1 
FI 5.31 3.86 3.44 3.46 3.03 2.76 2.23 2.17 1.90 1.40

FN 1.26 1.09 0.94 0.83 0.84 0.80 0.83 0.83 0.65 0.65

FP 30.12 22.06 19.01 16.46 16.67 16.34 17.96 18.78 18.31 16.90E2 
FI 3.12 2.53 2.23 1.93 1.97 1.90 2.05 2.10 1.90 1.80

FN 1.37 1.25 0.92 1.29 1.46 1.43 1.39 1.14 0.96 0.96

FP 128.53 72.71 61.96 37.95 27.51 25.08 23.02 21.16 19.05 17.46L1 
FI 5.69 4.53 3.73 3.33 3.10 2.92 2.75 2.40 2.10 2.00

FN 1.50 1.07 0.86 0.68 0.45 0.47 0.27 0.32 0.32 0.32

FP 31.21 19.90 14.44 10.49 10.71 8.57 7.50 8.57 7.86 5.71L2 
FI 3.32 2.32 1.78 1.36 1.17 1.04 0.78 0.90 0.85 0.70

FN 0.19 0.46 0.77 1.29 1.23 0.89 0.88 0.83 0.83 0.73

FP 1282.00 450.51 235.63 112.24 106.19 101.71 92.86 93.33 87.14 85.71S1 
FI 6.60 5.41 5.46 5.17 4.90 4.42 4.10 4.07 3.85 3.70

FN 1.23 0.75 0.65 0.48 0.57 0.51 0.67 0.57 0.48 0.32

FP 38.95 28.63 21.21 17.56 14.12 13.04 7.54 8.47 7.14 7.94S2 
FI 3.24 2.31 1.80 1.44 1.37 1.26 1.10 1.07 0.90 0.80
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Table 42: The Identification Error Rates of SR Method for Group 2 (δ = 0.99) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 0.62 0.47 0.43 0.33 0.22 0.20 0.23 0.20 0.15 0.20

FP 61.00 46.67 42.50 32.86 21.67 20.00 22.50 20.00 15.00 20.00E1 
FI 1.22 0.93 0.85 0.66 0.43 0.40 0.45 0.40 0.30 0.40

FN 0.26 0.19 0.19 0.19 0.20 0.16 0.18 0.17 0.20 0.20

FP 26.00 18.89 18.75 18.57 20.00 16.00 17.50 16.67 20.00 20.00E2 
FI 0.52 0.38 0.38 0.37 0.40 0.32 0.35 0.33 0.40 0.40

FN 0.61 0.52 0.43 0.43 0.42 0.42 0.33 0.27 0.20 0.20

FP 60.00 51.11 42.50 42.86 41.67 42.00 32.50 26.67 20.00 20.00L1 
FI 1.20 1.02 0.85 0.86 0.83 0.84 0.65 0.53 0.40 0.40

FN 0.36 0.28 0.20 0.14 0.15 0.16 0.10 0.10 0.05 0.00

FP 36.00 27.78 20.00 14.29 15.00 16.00 10.00 10.00 5.00 0.00L2 
FI 0.72 0.56 0.40 0.29 0.30 0.32 0.20 0.20 0.10 0.00

FN 0.79 0.80 0.72 0.72 0.71 0.73 0.66 0.61 0.56 0.51

FP 78.00 78.89 71.25 71.43 70.00 72.00 65.00 60.00 55.00 50.00S1 
FI 1.56 1.58 1.43 1.43 1.40 1.44 1.30 1.20 1.10 1.00

FN 0.27 0.16 0.10 0.09 0.08 0.06 0.03 0.07 0.05 0.10

FP 27.00 15.56 10.00 8.57 8.33 6.00 2.50 6.67 5.00 10.00S2 
FI 0.54 0.31 0.20 0.17 0.17 0.12 0.05 0.13 0.10 0.20
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Table 43: The Identification Error Rates of EB Method for Group 2 (δ = 0.99) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 0.43 0.28 0.21 0.17 0.12 0.10 0.08 0.10 0.10 0.10

FP 43.00 27.78 21.25 17.14 11.67 10.00 7.50 10.00 10.00 10.00E1 
FI 0.86 0.56 0.43 0.34 0.23 0.20 0.15 0.20 0.20 0.20

FN 0.19 0.17 0.19 0.17 0.15 0.18 0.15 0.20 0.20 0.20

FP 19.00 16.67 18.75 17.14 15.00 18.00 15.00 20.00 20.00 20.00E2 
FI 0.38 0.33 0.38 0.34 0.30 0.36 0.30 0.40 0.40 0.40

FN 0.46 0.39 0.33 0.29 0.25 0.22 0.25 0.17 0.20 0.10

FP 46.00 38.89 32.50 28.57 25.00 22.00 25.00 16.67 20.00 10.00L1 
FI 0.92 0.78 0.65 0.57 0.50 0.44 0.50 0.33 0.40 0.20

FN 0.21 0.15 0.09 0.09 0.10 0.08 0.05 0.00 0.00 0.00

FP 21.00 14.44 8.75 8.57 10.00 8.00 5.00 0.00 0.00 0.00L2 
FI 0.42 0.29 0.18 0.17 0.20 0.16 0.10 0.00 0.00 0.00

FN 0.72 0.70 0.59 0.55 0.57 0.55 0.56 0.54 0.56 0.51

FP 71.00 68.89 58.75 54.29 56.67 54.00 55.00 53.33 55.00 50.00S1 
FI 1.42 1.38 1.18 1.09 1.13 1.08 1.10 1.07 1.10 1.00

FN 0.14 0.08 0.08 0.03 0.02 0.00 0.00 0.00 0.00 0.00

FP 14.00 7.78 7.50 2.86 1.67 0.00 0.00 0.00 0.00 0.00S2 
FI 0.28 0.16 0.15 0.06 0.03 0.00 0.00 0.00 0.00 0.00
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Table 44: The Identification Error Rates of CI Method for Group 2 (δ = 0.99) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 0.68 0.49 0.67 0.53 0.51 0.45 0.41 0.41 0.41 0.31

FP 104.12 62.01 33.33 29.63 27.78 22.96 25.93 22.22 22.22 22.22E1 
FI 2.44 1.71 1.55 1.31 1.25 1.06 1.10 1.00 1.00 0.90

FN 0.41 0.26 0.22 0.10 0.10 0.10 0.05 0.03 0.05 0.10

FP 59.61 45.08 31.87 28.57 26.09 20.87 15.22 15.94 10.87 13.04E2 
FI 1.61 1.22 0.94 0.76 0.70 0.58 0.40 0.40 0.30 0.40

FN 0.15 0.17 0.46 0.39 0.34 0.30 0.33 0.20 0.20 0.10

FP 443.18 240.32 101.79 98.98 92.86 92.86 94.64 100.00 107.14 92.86L1 
FI 2.10 1.82 1.88 1.77 1.63 1.60 1.65 1.60 1.70 1.40

FN 0.46 0.42 0.40 0.41 0.39 0.47 0.51 0.48 0.51 0.51

FP 54.40 25.37 18.18 17.37 11.33 6.92 7.69 6.41 5.77 3.85L2 
FI 1.50 0.98 0.81 0.81 0.67 0.64 0.70 0.63 0.65 0.60

FN 0.00 0.11 0.21 0.23 0.22 0.28 0.53 0.44 0.40 0.30

FP 932.46 752.38 327.50 294.29 263.33 190.32 100.00 75.76 90.91 90.91 S1 
FI 1.92 1.87 1.85 1.70 1.53 1.46 1.63 1.27 1.40 1.30

FN 0.42 0.33 0.26 0.18 0.19 0.18 0.21 0.14 0.15 0.31

FP 37.78 19.16 14.58 11.31 13.19 9.76 9.09 4.00 1.96 0.00S2 
FI 1.26 0.78 0.60 0.44 0.50 0.42 0.43 0.23 0.20 0.30
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Table 45: The Identification Error Rates of SR Method for Group 3 (δ = 0.90) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 3.43 2.79 2.15 2.03 1.63 1.53 1.42 1.33 1.22 1.11

FP 30.90 25.11 19.38 18.29 14.67 13.80 12.75 12.00 11.00 10.00E1 
FI 6.18 5.02 3.88 3.66 2.93 2.76 2.55 2.40 2.20 2.00

FN 2.10 1.48 1.32 1.08 1.02 0.93 0.81 0.74 0.67 0.78

FP 18.90 13.33 11.88 9.71 9.17 8.40 7.25 6.67 6.00 7.00E2 
FI 3.78 2.67 2.38 1.94 1.83 1.68 1.45 1.33 1.20 1.40

FN 4.44 3.65 2.97 2.63 2.54 2.33 2.22 1.96 1.83 2.00

FP 40.00 32.89 26.75 23.71 22.83 21.00 20.00 17.67 16.50 18.00L1 
FI 8.00 6.58 5.35 4.74 4.57 4.20 4.00 3.53 3.30 3.60

FN 2.44 1.62 1.50 1.19 1.20 1.09 1.06 0.85 0.94 0.78

FP 22.00 14.56 13.50 10.71 10.83 9.80 9.50 7.67 8.50 7.00L2 
FI 4.40 2.91 2.70 2.14 2.17 1.96 1.90 1.53 1.70 1.40

FN 6.71 5.77 5.11 4.52 4.33 4.11 3.83 3.74 3.89 3.78

FP 60.40 51.89 46.00 40.71 39.00 37.00 34.50 33.67 35.00 34.00S1 
FI 12.08 10.38 9.20 8.14 7.80 7.40 6.90 6.73 7.00 6.80

FN 2.50 1.83 1.53 1.33 1.11 0.93 0.83 0.85 0.94 1.00

FP 22.50 16.44 13.75 12.00 10.00 8.40 7.50 7.67 8.50 9.00S2 
FI 4.50 3.29 2.75 2.40 2.00 1.68 1.50 1.53 1.70 1.80
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Table 46: The Identification Error Rates of EB Method for Group 3 (δ = 0.90) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 2.32 1.77 1.49 1.22 1.11 1.04 0.97 1.00 0.89 1.00

FP 20.90 15.89 13.38 11.00 10.00 9.40 8.75 9.00 8.00 9.00E1 
FI 4.18 3.18 2.68 2.20 2.00 1.88 1.75 1.80 1.60 1.80

FN 1.18 0.86 0.69 0.63 0.54 0.51 0.50 0.44 0.44 0.33

FP 10.60 7.78 6.25 5.71 4.83 4.60 4.50 4.00 4.00 3.00E2 
FI 2.12 1.56 1.25 1.14 0.97 0.92 0.90 0.80 0.80 0.60

FN 3.08 2.32 1.94 1.63 1.50 1.36 1.31 1.19 1.17 1.22

FP 27.70 20.89 17.50 14.71 13.50 12.20 11.75 10.67 10.50 11.00L1 
FI 5.54 4.18 3.50 2.94 2.70 2.44 2.35 2.13 2.10 2.20

FN 1.49 1.12 1.04 0.97 0.89 0.89 0.83 0.74 0.67 0.78

FP 13.40 10.11 9.38 8.71 8.00 8.00 7.50 6.67 6.00 7.00L2 
FI 2.68 2.02 1.88 1.74 1.60 1.60 1.50 1.33 1.20 1.40

FN 5.38 4.33 3.88 3.63 3.37 3.24 3.08 3.00 3.06 3.00

FP 48.40 39.00 34.88 32.71 30.33 29.20 27.75 27.00 27.50 27.00S1 
FI 9.68 7.80 6.98 6.54 6.07 5.84 5.55 5.40 5.50 5.40

FN 1.60 1.28 1.01 0.87 0.85 0.76 0.75 0.74 0.78 0.78

FP 14.40 11.56 9.13 7.86 7.67 6.80 6.75 6.67 7.00 7.00S2 
FI 2.88 2.31 1.83 1.57 1.53 1.36 1.35 1.33 1.40 1.40
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Table 47: The Identification Error Rates of CI Method for Group 3 (δ = 0.90) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 2.27 2.51 2.13 1.51 1.37 1.11 0.92 1.04 0.72 0.67

FP 68.00 33.55 26.72 26.05 22.88 22.75 22.06 19.28 18.63 21.57E1 
FI 7.20 5.68 4.64 4.01 3.57 3.32 3.08 2.90 2.55 2.80

FN 1.72 1.21 0.93 0.76 0.43 0.38 0.42 0.30 0.45 0.34

FP 24.62 15.23 12.16 11.84 9.91 10.45 10.14 9.01 7.21 6.31E2 
FI 4.10 2.74 2.18 1.99 1.48 1.50 1.50 1.27 1.20 1.00

FN 2.17 2.29 2.72 2.38 2.24 2.15 1.94 1.70 1.77 1.77

FP 105.56 64.50 36.22 32.51 28.23 26.12 23.21 20.07 17.86 23.47L1 
FI 8.68 7.18 6.00 5.33 4.78 4.50 4.03 3.50 3.35 3.90

FN 1.79 1.80 1.50 1.10 0.95 0.87 0.87 0.82 0.73 0.78

FP 36.88 15.78 14.02 12.95 11.68 11.03 10.51 11.21 10.75 12.15L2 
FI 5.05 3.30 2.84 2.37 2.10 1.96 1.90 1.93 1.80 2.00

FN 0.51 1.15 2.09 3.55 3.15 2.91 2.76 2.48 2.63 2.52

FP 849.09 244.76 134.18 59.80 56.01 53.02 47.09 46.12 47.09 44.19S1 
FI 9.84 9.68 9.24 8.39 7.70 7.22 6.58 6.23 6.45 6.10

FN 1.97 1.57 1.49 1.29 1.15 0.96 0.86 0.93 1.00 1.22

FP 32.50 21.45 13.65 12.75 9.48 8.63 7.60 8.50 7.35 7.84S2 
FI 4.78 3.47 2.71 2.46 2.00 1.74 1.55 1.70 1.65 1.90
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Table 48: The Identification Error Rates of SR Method for Group 3 (δ = 0.95) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 2.26 1.65 1.58 1.43 1.39 1.22 1.16 1.16 1.26 1.26

FP 43.00 31.33 30.00 27.14 26.33 23.20 22.00 22.00 24.00 24.00E1 
FI 4.30 3.13 3.00 2.71 2.63 2.32 2.20 2.20 2.40 2.40

FN 1.39 1.06 0.91 0.87 0.77 0.65 0.63 0.60 0.53 0.53

FP 26.40 20.22 17.25 16.57 14.67 12.40 12.00 11.33 10.00 10.00E2 
FI 2.64 2.02 1.73 1.66 1.47 1.24 1.20 1.13 1.00 1.00

FN 2.47 2.06 1.84 1.55 1.39 1.41 1.29 1.23 1.21 1.05

FP 47.00 39.11 35.00 29.43 26.33 26.80 24.50 23.33 23.00 20.00L1 
FI 4.70 3.91 3.50 2.94 2.63 2.68 2.45 2.33 2.30 2.00

FN 1.35 1.09 0.93 0.72 0.72 0.67 0.58 0.53 0.53 0.53

FP 25.60 20.67 17.75 13.71 13.67 12.80 11.00 10.00 10.00 10.00L2 
FI 2.56 2.07 1.78 1.37 1.37 1.28 1.10 1.00 1.00 1.00

FN 3.45 3.05 2.64 2.63 2.30 2.23 2.16 2.11 1.95 2.00

FP 65.60 58.00 50.25 50.00 43.67 42.40 41.00 40.00 37.00 38.00S1 
FI 6.56 5.80 5.03 5.00 4.37 4.24 4.10 4.00 3.70 3.80

FN 1.29 1.03 0.86 0.77 0.72 0.61 0.61 0.53 0.53 0.42

FP 24.60 19.56 16.25 14.57 13.67 11.60 11.50 10.00 10.00 8.00S2 
FI 2.46 1.96 1.63 1.46 1.37 1.16 1.15 1.00 1.00 0.80
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Table 49: The Identification Error Rates of EB Method for Group 3 (δ = 0.95) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 1.52 1.19 1.14 1.07 1.05 0.93 1.05 1.09 1.05 1.16

FP 28.80 22.67 21.75 20.29 20.00 17.60 20.00 20.67 20.00 22.00E1 
FI 2.88 2.27 2.18 2.03 2.00 1.76 2.00 2.07 2.00 2.20

FN 0.85 0.68 0.61 0.60 0.49 0.48 0.45 0.46 0.37 0.42

FP 16.20 12.89 11.50 11.43 9.33 9.20 8.50 8.67 7.00 8.00E2 
FI 1.62 1.29 1.15 1.14 0.93 0.92 0.85 0.87 0.70 0.80

FN 1.77 1.36 1.17 1.07 1.07 0.99 0.95 0.91 0.84 0.84

FP 33.60 25.78 22.25 20.29 20.33 18.80 18.00 17.33 16.00 16.00L1 
FI 3.36 2.58 2.23 2.03 2.03 1.88 1.80 1.73 1.60 1.60

FN 0.88 0.75 0.66 0.59 0.56 0.57 0.53 0.53 0.53 0.53

FP 16.80 14.22 12.50 11.14 10.67 10.80 10.00 10.00 10.00 10.00L2 
FI 1.68 1.42 1.25 1.11 1.07 1.08 1.00 1.00 1.00 1.00

FN 2.88 2.29 2.05 1.86 1.72 1.75 1.76 1.65 1.74 1.58

FP 54.80 43.56 39.00 35.43 32.67 33.20 33.50 31.33 33.00 30.00S1 
FI 5.48 4.36 3.90 3.54 3.27 3.32 3.35 3.13 3.30 3.00

FN 0.76 0.54 0.43 0.41 0.40 0.38 0.37 0.39 0.32 0.32

FP 14.40 10.22 8.25 7.71 7.67 7.20 7.00 7.33 6.00 6.00S2 
FI 1.44 1.02 0.83 0.77 0.77 0.72 0.70 0.73 0.60 0.60
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Table 50: The Identification Error Rates of CI Method for Group 3 (δ = 0.95) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 1.36 1.54 1.31 1.30 1.07 1.31 1.43 1.41 1.35 1.30

FP 96.06 56.16 43.26 32.36 27.18 19.72 13.67 13.78 14.00 13.33E1 
FI 5.20 4.54 3.73 3.27 2.77 2.62 2.35 2.33 2.30 2.20

FN 1.41 1.06 0.77 0.72 0.74 0.60 0.65 0.50 0.48 0.32

FP 33.85 21.42 17.25 16.30 15.49 15.49 14.79 13.62 12.68 14.08E2 
FI 3.52 2.47 1.94 1.83 1.78 1.66 1.65 1.43 1.35 1.30

FN 1.23 1.48 1.10 1.19 1.43 1.56 1.47 1.32 1.12 0.85

FP 129.85 73.67 62.08 48.03 33.43 22.54 19.84 20.63 15.87 15.87L1 
FI 5.41 4.80 4.04 3.57 3.27 2.88 2.63 2.53 2.05 1.80

FN 1.47 1.17 1.03 1.04 0.95 0.97 0.81 0.75 0.75 0.75

FP 29.81 19.23 15.11 11.32 7.86 6.29 6.07 5.71 5.71 5.71L2 
FI 3.24 2.37 1.98 1.76 1.43 1.34 1.18 1.10 1.10 1.10

FN 0.24 0.46 0.98 1.21 1.05 0.91 0.78 0.66 0.52 0.31

FP 1246.00 488.89 173.56 114.69 104.29 100.00 93.57 88.57 90.00 88.57S1 
FI 6.47 5.83 5.46 5.19 4.67 4.38 4.03 3.73 3.65 3.40

FN 1.10 0.83 0.63 0.56 0.64 0.61 0.56 0.75 0.59 0.53

FP 42.70 31.11 30.68 24.94 21.30 21.55 14.34 11.11 10.32 7.94S2 
FI 3.32 2.50 2.29 1.90 1.80 1.80 1.40 1.40 1.20 1.00
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Table 51: The Identification Error Rates of SR Method for Group 3 (δ = 0.99) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 0.49 0.38 0.32 0.22 0.24 0.20 0.13 0.10 0.10 0.00

FP 49.00 37.78 31.25 21.43 23.33 20.00 12.50 10.00 10.00 0.00E1 
FI 0.98 0.76 0.63 0.43 0.47 0.40 0.25 0.20 0.20 0.00

FN 0.26 0.19 0.16 0.16 0.12 0.16 0.15 0.13 0.10 0.20

FP 26.00 18.89 16.25 15.71 11.67 16.00 15.00 13.33 10.00 20.00E2 
FI 0.52 0.38 0.33 0.31 0.23 0.32 0.30 0.27 0.20 0.40

FN 0.60 0.45 0.39 0.35 0.32 0.26 0.30 0.24 0.25 0.30

FP 59.00 44.44 38.75 34.29 31.67 26.00 30.00 23.33 25.00 30.00L1 
FI 1.18 0.89 0.78 0.69 0.63 0.52 0.60 0.47 0.50 0.60

FN 0.35 0.31 0.27 0.26 0.25 0.24 0.23 0.27 0.25 0.20

FP 35.00 31.11 26.25 25.71 25.00 24.00 22.50 26.67 25.00 20.00L2 
FI 0.70 0.62 0.53 0.51 0.50 0.48 0.45 0.53 0.50 0.40

FN 0.86 0.76 0.73 0.69 0.64 0.69 0.68 0.67 0.56 0.61

FP 85.00 75.56 72.50 68.57 63.33 68.00 67.50 66.67 55.00 60.00S1 
FI 1.70 1.51 1.45 1.37 1.27 1.36 1.35 1.33 1.10 1.20

FN 0.26 0.17 0.14 0.14 0.10 0.08 0.08 0.00 0.00 0.10

FP 26.00 16.67 13.75 14.29 10.00 8.00 7.50 0.00 0.00 10.00S2 
FI 0.52 0.33 0.28 0.29 0.20 0.16 0.15 0.00 0.00 0.20
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Table 52: The Identification Error Rates of EB Method for Group 3 (δ = 0.99) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 0.33 0.24 0.16 0.14 0.13 0.10 0.03 0.00 0.00 0.00

FP 33.00 23.33 16.25 14.29 13.33 10.00 2.50 0.00 0.00 0.00E1 
FI 0.66 0.47 0.33 0.29 0.27 0.20 0.05 0.00 0.00 0.00

FN 0.17 0.16 0.11 0.12 0.10 0.14 0.10 0.10 0.10 0.10

FP 17.00 15.56 11.25 11.43 10.00 14.00 10.00 10.00 10.00 10.00E2 
FI 0.34 0.31 0.23 0.23 0.20 0.28 0.20 0.20 0.20 0.20

FN 0.45 0.34 0.29 0.27 0.25 0.26 0.25 0.27 0.25 0.20

FP 45.00 33.33 28.75 27.14 25.00 26.00 25.00 26.67 25.00 20.00L1 
FI 0.90 0.67 0.58 0.54 0.50 0.52 0.50 0.53 0.50 0.40

FN 0.23 0.19 0.18 0.17 0.15 0.12 0.15 0.17 0.10 0.10

FP 23.00 18.89 17.50 17.14 15.00 12.00 15.00 16.67 10.00 10.00L2 
FI 0.46 0.38 0.35 0.34 0.30 0.24 0.30 0.33 0.20 0.20

FN 0.77 0.68 0.59 0.59 0.56 0.55 0.56 0.54 0.45 0.51

FP 76.00 67.78 58.75 58.57 55.00 54.00 55.00 53.33 45.00 50.00S1 
FI 1.52 1.36 1.18 1.17 1.10 1.08 1.10 1.07 0.90 1.00

FN 0.11 0.09 0.03 0.01 0.03 0.02 0.00 0.00 0.00 0.00

FP 11.00 8.89 2.50 1.43 3.33 2.00 0.00 0.00 0.00 0.00S2 
FI 0.22 0.18 0.05 0.03 0.07 0.04 0.00 0.00 0.00 0.00
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Table 53: The Identification Error Rates of CI Method for Group 3 (δ = 0.99) 
 

  1 2 3 4 5 6 7 8 9 10 
FN 0.56 0.65 0.59 0.73 0.70 0.62 0.62 0.62 0.51 0.51

FP 120.78 83.04 61.93 39.78 32.72 30.37 23.15 22.22 20.37 14.81E1 
FI 2.41 2.21 1.94 1.74 1.57 1.42 1.23 1.20 1.05 0.90

FN 0.45 0.32 0.29 0.29 0.31 0.31 0.26 0.17 0.20 0.20

FP 55.94 39.90 29.21 19.88 16.67 9.57 10.87 14.49 10.87 4.35E2 
FI 1.57 1.17 0.94 0.74 0.68 0.52 0.50 0.50 0.45 0.30

FN 0.12 0.19 0.34 0.29 0.27 0.24 0.23 0.24 0.05 0.10

FP 454.76 208.97 96.43 84.69 97.62 97.14 91.07 76.19 85.71 85.71L1 
FI 2.03 2.00 1.69 1.47 1.63 1.60 1.50 1.30 1.25 1.30

FN 0.41 0.36 0.35 0.34 0.39 0.43 0.49 0.41 0.46 0.41

FP 51.58 30.81 22.28 17.37 16.99 11.54 11.54 11.54 9.62 7.69L2 
FI 1.38 1.03 0.85 0.74 0.82 0.72 0.78 0.70 0.70 0.60

FN 0.00 0.07 0.28 0.29 0.22 0.24 0.53 0.54 0.40 0.20

FP 967.32 922.22 335.00 305.71 360.00 312.00 118.18 78.79 104.55 81.82S1 
FI 1.91 1.91 1.95 1.81 2.02 1.80 1.83 1.40 1.55 1.10

FN 0.45 0.38 0.35 0.34 0.36 0.33 0.28 0.24 0.15 0.20

FP 38.67 30.99 25.52 22.02 22.22 24.17 26.04 23.61 20.83 16.67S2 
FI 1.31 1.10 0.95 0.86 0.88 0.90 0.90 0.80 0.65 0.60
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APPENDIX C: SAFETY PERFORMANCE FUNCTIONS OF 
VARIOUS FUNCTIONAL CLASSIFICATIONS OF ARIZONA ROAD 

SEGMENTS 
 
Due to the existence of overdispersion of crashes in the nine functional classifications of 
road segments, the NB regression model is employed to develop the SPFs. Two different 
model forms are tried, and the model form resulting in less prediction errors is selected. 
The major results of SPFs, including model form, estimated parameter values, associated 
standard errors, t-statistics, and over-dispersion parameters are shown in Tables 54~62 
respectively.  Figures 18~26 demonstrate the visual relationships between predicted 
crashes per km per year and AADT.    
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Figure 18: Relation of AADT and Crashes/year-km for Rural Interstate Principle 

Arterials (Functional Code: 1, year: 2000) 
 

 

 

 

Table 54: Estimation Results for SPF of Rural Interstate Principle Arterials 
(Functional Code: 1) 

 
Model1: λ=exp{-9.506+0.258×SL+1.043×ln(AADT)} 

Parameter Estimate Std Error T-Statistics 
Intercept -9.5064694 0.82539379 -11.51750 
SL2 0.2582805 0.01422997 18.15046 
Ln(AADT) 1.0427151 0.07924371 13.15833 
Over-dispersion Parameter: 3.183979, Rp-squared= 0.5396, G2=1230.6 
Note: 1: λ⎯crash number in road segment during 1 year. 
          2: SL⎯road section length (km). 
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Figure 19: Relation of AADT and Crashes/year-km for Rural Other Principle 

Arterials (Functional Code: 2, year: 2000) 
 
 
 
 
 
 
 

Table 55: Estimation Results for SPF of Rural Other Principle Arterials 
(Functional Code: 2) 

 
Model1: λ=exp{-3.959+0.191×SL+0.549×ln(AADT)} 

Parameter Estimate Std Error T-Statistics 
Intercept -3.9588146 0.76381057 -5.182980 
SL2 0.1912418 0.01317196 14.518864 
Ln(AADT) 0.5493370 0.08342578 6.584739 
Over-dispersion Parameter: 4.557303, Rp-squared= 0.3947, G2=1873.3 
Note: 1: λ⎯crash number in road segment during 1 year. 
          2: SL⎯road section length (km). 
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Figure 20: Relation of AADT and Crashes/year-km for Rural Minor Arterials 

(Functional Code: 6, year: 2000) 
 
 
 
 
 
 
 
 

Table 56: Estimation Results for SPF of Rural Minor Arterials 
(Functional Code: 6) 

 
Model1: λ=exp{-6.263+0.230×SL+0.799×ln(AADT)} 

Parameter Estimate Std Error T-Statistics 
Intercept -6.2631910 0.54049300 -11.58792 
SL2 0.2297051 0.01259435 18.23874 
Ln(AADT) 0.7995184 0.05990074 13.34739 
Over-dispersion Parameter: 3.222105, Rp-squared= 0.6319, G2=1380.6 
Note: 1: λ⎯crash number in road segment during 1 year. 
          2: SL⎯road section length (km). 
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Figure 21: Relation of AADT and Crashes/year-km for Rural Major Collectors 

(Functional Code: 7, year: 2000) 
 
 
 
 
 
 
 
Table 57: Estimation Results for SPF of Rural Major Collectors (Functional Code: 

7) 
 
Model1: λ=exp{-2.574+0.195×SL+0.352×ln(AADT)} 

Parameter Estimate Std Error T-Statistics 
Intercept -2.5742562 0.48346848 -5.324559 
SL2 0.1954693 0.01156483 16.902053 
Ln(AADT) 0.3518093 0.06069124 5.796707 
Over-dispersion Parameter: 4.113486, Rp-squared= 0.4026, G2=2058.6 
Note: 1: λ⎯crash number in road segment during 1 year. 
          2: SL⎯road section length (km). 
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Figure 22: Relation of AADT and Crashes/year-km for Rural Minor Collectors 
(Functional Code: 8, year: 2000) 

 

 

 

 

Table 58: Estimation Results for SPF of Rural Minor Collectors (Functional Code: 
8) 

 
Model1: λ=exp{-2.376+0.220×SL+0.204×ln(AADT)} 

Parameter Estimate Std Error T-Statistics 
Intercept -2.3757517 1.11444736 -2.131776 
SL2 0.2201045 0.03297558 6.674771 
Ln(AADT) 0.2040924 0.16920269 1.206201 
Over-dispersion Parameter: 1.753917, Rp-squared= 0.3950, G2=141.5 
Note: 1: λ⎯crash number in road segment during 1 year. 
          2: SL⎯road section length (km). 
        



 113

AADT

A
cc

id
en

ts
 / 

km
-y

ea
r

50000 100000 150000 200000 250000

0
10

0
20

0
30

0

50000 100000 150000 200000 250000

0
10

0
20

0
30

0

 
Figure 23: Relation of AADT and Crashes/year-km for Urban Interstate Principle 

Arterials (Functional Code: 11, year: 2000) 
 

 

 

 

 

Table 59: Estimation Results for SPF of Urban Interstate Principle Arterials 
(Functional Code: 11) 

 
Model1: λ=exp{-15.063+0.641×SL+1.489×ln(AADT)} 

Parameter Estimate Std Error T-Statistics 
Intercept -15.0635312 1.26037041 -11.95167 
SL2 0.6413353 0.05782069 11.09180 
Ln(AADT) 1.4892735 0.10328018 14.41974 
Over-dispersion Parameter: 9.826755, Rp-squared= 0.7196, G2=1739.5 
Note: 1: λ⎯crash number in road segment during 1 year. 
          2: SL⎯road section length (km). 
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Figure 24: Relation of AADT and Crashes/year-km for Urban Freeways 
(Functional Code: 12, year: 2000) 

 
 
 
 
 
 
 
 

Table 60: Estimation Results for SPF of Urban Freeways 
(Functional Code: 12) 

 
Model1: λ=exp{-16.322+0.115×SL+1.629×ln(AADT)} 

Parameter Estimate Std Error T-Statistics 
Intercept -16.3219233 2.86360896 -5.699774 
SL2 0.1154657 0.01346027 8.578257 
Ln(AADT) 1.6289176 0.24278373 6.709336 
Over-dispersion Parameter: 19.71501, Rp-squared= 0.3374, G2=1946.3 
Note: 1: λ⎯crash number in road segment during 1 year. 
          2: SL⎯road section length (km). 
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Figure 25: Relation of AADT and Crashes/year-km for Urban Other Principle 
Arterials (Functional Code: 14, year: 2000) 

 
 
 
 
 
 
 

Table 61: Estimation Results for SPF of Urban Other Principle Arterials 
(Functional Code: 14) 

 
Model1: λ=exp{-10.192+0.825×SL+1.124×ln(AADT)} 

Parameter Estimate Std Error T-Statistics 
Intercept -10.1915082 1.29736797 -7.855526 
SL2 0.8251083 0.09225009 8.944255 
Ln(AADT) 1.1243125 0.12909345 8.709292 
Over-dispersion Parameter: 10.31901, Rp-squared= 0.5672, G2=3646.5 
Note: 1: λ⎯crash number in road segment during 1 year. 
          2: SL⎯road section length (km). 
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Figure 26: Relation of AADT and Crashes/year-km for Urban Minor Arterials 

(Functional Code: 16, year: 2000) 
 
 
 
 
 
 
 
 

Table 62: Estimation Results for SPF of Urban Minor Arterials 
(Functional Code: 16) 

 
Model1: λ=exp{-7.755+0.703×SL+0.864×ln(AADT)} 

Parameter Estimate Std Error T-Statistics 
Intercept -7.7549163 1.49116881 -5.200562 
SL2 0.7030970 0.08656798 8.121907 
Ln(AADT) 0.8642005 0.15184554 5.691313 
Over-dispersion Parameter: 4.939187, Rp-squared= 0.4711, G2=681.4 
Note: 1: λ⎯crash number in road segment during 1 year. 
          2: SL⎯road section length (km). 
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APPENDIX D: COMPARISON TESTS RESULTS AND SIMILARITY 
OF ALTERNATIVE HSID METHODS FOR VARIOUS 

CLASSIFICATIONS OF HIGHWAY SECTIONS 
 
In addition to the experiment design based on the simulated crash data, real Arizona crash 
data are also used in chapter V of this report to compare the performances of alternative 
HSID methods. Five evaluation tests are conducted, which include the site consistency 
test, method consistency test, total ranking differences test, false identification test, and 
false true Poisson means difference test. Similarity of identification results of these HSID 
methods are explored as well. This appendix presents the comparison tests results and 
similarity of alternative HSID methods for each of the nine classifications of highway 
sections, which are shown in Tables 63~125.  
 
 

Table 63: Similarity of Identification Results (δ = 0.90) of Various Methods 
(Functional Code: 1) 

 
 Bayesian Frequency Rate the ARP1 

Bayesian  33 (82.5%) 19 (47.5%) 19 (47.5%) 
Frequency 33 (82.5%)  26 (65%) 26 (65%) 

Rate 19 (47.5%) 26 (65%)  38 (95%) 
the ARP1 19 (47.5%) 26 (65%) 38 (95%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 90% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 64: Similarity of Identification Results (δ = 0.95) of Various Methods 
(Functional Code: 1) 

 
 Bayesian Frequency Rate the ARP1 

Bayesian  18 (90%) 12 (60%) 7 (35%) 
Frequency 18 (90%)  14 (70%) 9 (45%) 

Rate 12 (60%) 14 (70%)  13 (65%) 
the ARP1 7 (35%) 9 (45%) 13 (65%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 95% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
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Table 65: Results of Site Consistency Test of Various Methods 
(Functional Code: 1) 

 
δ = 0.90 δ = 0.95 

Method 2000 Crashes 2001-2002 
Crashes 

2000 Crashes 2001-2002 
Crashes 

Frequency 384 724 249 418 
Rate 341 541 204 259 

Bayesian 377 751 248 421 
the ARP1 347 573 236 354 

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
 
 
 

Table 66: Results of Method Consistency Test of Various Methods 
(Functional Code: 1) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 26 (65%) 9 (45%) 

Frequency 21 (52.5%) 9 (45%) 
Rate 20 (50%) 4 (20%) 

the ARP1 16 (40%) 6 (30%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by methods in both periods, the percent in 
the parenthesis stands for the corresponding percentage. 
 
 
 

Table 67: Results of Total Ranking Differences Test of Various Methods 
(Functional Code: 1) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 2042 1547 

Frequency 2674 2000 
Rate 3781 2522 

the ARP1 4739 3038 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 68: Results of False Identification Test of Various Methods 
(Functional Code: 1) 

 
Method  δ = 0.90 δ = 0.95 

FN 15 (2.1%) 13 (1.8%) 
FP 15 (19.2%) 13 (34.2%) Bayesian 
FI 30 (3.7%) 26 (26%) 
FN 19 (2.6%) 13 (1.8%) 
FP 19 (24.4%) 13 (34.2%) Frequency 
FI 38 (4.7%) 26 (26%) 
FN 46 (6.3%) 25 (3.3%) 
FP 46 (59.0%) 25 (65.8%) Rate 
FI 92 (11.4%) 50 (6.2%) 
FN 38 (5.2%) 18 (2.3%) 
FP 38 (48.7%) 18 (47.4%) the ARP1 

FI 76 (9.4%) 36 (4.5%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of false identifications; the percent in the parenthesis stands for the 
corresponding percentage. 
        
   
 
Table 69: Results of False True Poisson Means Differences Test of Various Methods 

(Functional Code: 1) 
 

Method  δ = 0.90 δ = 0.95 
FN 29.9 47.5 
FP 52.5 48.1 Bayesian 
FI 82.4 95.6 
FN 46.9 48.9 
FP 57.7 40.3 Frequency 
FI 104.6 89.2 
FN 91.8 65.5 
FP 182.2 112.5 the ARP1 
FI 274.0 178.0 
FN 151.7 102.5 
FP 151.0 98.4 Rate 

FI 302.7 200.9 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 70: Similarity of Identification Results (δ = 0.90) of Various Methods 

(Functional Code: 2) 
 
 Bayesian Frequency Rate the ARP1 

Bayesian  34(77%) 21 (47.7%) 32 (72.7%) 
Frequency 34(77%)  30 (68.2%) 42 (95.5%) 

Rate 21 (47.7%) 30 (68.2%)  32 (72.7%) 
the ARP1 32 (72.7%) 42 (95.5%) 32 (72.7%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 90% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 71: Similarity of Identification Results (δ = 0.95) of Various Methods 
(Functional Code: 2) 

 
 Bayesian Frequency Rate the ARP1 

Bayesian  19 (86.4%) 8 (36.4%) 19 (86.4%) 
Frequency 19 (86.4%)  10 (45.5%) 22 (100%) 

Rate 8 (36.4%) 10 (45.5%)  10 (45.5%) 
the ARP1 19 (86.4%) 22 (100%) 10 (45.5%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 95% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 72: Results of Site Consistency Test of Various Methods 
(Functional Code: 2) 

 
δ = 0.90 δ = 0.95 

Method 2000 Crashes 2001-2002 
Crashes 

2000 Crashes 2001-2002 
Crashes 

Frequency 520 955 361 694 
Rate 448 784 263 508 

Bayesian 500 976 354 731 
the ARP1 517 937 361 694 

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 73: Results of Method Consistency Test of Various Methods 
(Functional Code: 2) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 23 (52.3%) 14 (63.6%) 

Frequency 20 (45.5%) 11 (50%) 
Rate 19 (43.2%) 7 (31.9%) 

the ARP1 18 (40.9%) 10 (45.5%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by methods in both periods; the percent in 
the parenthesis stands for the corresponding percentage. 
 
 
 

Table 74: Results of Total Ranking Differences Test of Various Methods 
(Functional Code: 2) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 3705 1963 

Frequency 4683 2715 
Rate 7304 4432 

the ARP1 5165 3395 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
 
 
 

Table 75: Results of False Identification Test of Various Methods 
(Functional Code: 2) 

 
Method  δ = 0.90 δ = 0.95 

FN 25 (3.1%) 10 (1.2%) 
FP 25 (29.1%) 10 (23.8%) Bayesian 
FI 50 (5.7%) 20 (2.3%) 
FN 24 (3.0%) 11 (1.3%) 
FP 24 (27.9%) 11 (26.2%) Frequency 
FI 48 (5.4%) 22 (2.5%) 
FN 49 (6.2%) 29 (3.5%) 
FP 49 (57.0%) 29 (69.0%) Rate 
FI 98 (11.1%) 58 (6.6%) 
FN 26 (3.3%) 12 (1.4%) 
FP 26 (30.2%) 12 (28.6%) the ARP1 

FI 52 (5.9%) 24 (2.7%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
        2: The number means the number of false identifications; the percent in the parenthesis stands for the 
corresponding percentage. 
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Table 76: Results of False True Poisson Means Differences Test of Various Methods 

(Functional Code: 2) 
 

Method  δ = 0.90 δ = 0.95 
FN 91.1 54.6 
FP 90.2 65.7 Bayesian 
FI 181.3 120.3 
FN 85.6 52.1 
FP 99.0 68.5 Frequency 
FI 184.6 120.6 
FN 81.3 64.5 
FP 100.1 69.1 the ARP1 
FI 181.4 133.6 
FN 253.4 194.3 
FP 199.9 167.2 Rate 

FI 453.3 361.5 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 77: Similarity of Identification Results (δ = 0.90) of Various Methods 

(Functional Code: 6) 
 
 Bayesian Frequency Rate the ARP1 

Bayesian  38 (86.4%) 15 (34.1%) 31 (70.5%) 
Frequency 38 (86.4%)  20 (45.5%) 37 (84.1%) 

Rate 15 (34.1%) 20 (45.5%)  23 (52.3%) 
the ARP1 31 (70.5%) 37 (84.1%) 23 (52.3%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 90% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 78: Similarity of Identification Results (δ = 0.95) of Various Methods 
(Functional Code: 6) 

 
 Bayesian Frequency Rate the ARP1 

Bayesian  14 (63.6%) 3 (13.6%) 13 (59.1%) 
Frequency 14 (63.6%)  11 (50%) 21(95.5%) 

Rate 3 (13.6%) 11 (50%)  11 (50%) 
the ARP1 13 (59.1%) 21(95.5%) 11 (50%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 95% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 79: Results of Site Consistency Test of Various Methods 
(Functional Code: 6) 

 
δ = 0.90 δ = 0.95 

Method 2000 Crashes 2001-2002 
Crashes 

2000 Crashes 2001-2002 
Crashes 

Frequency 471 718 319 399 
Rate 334 340 219 181 

Bayesian 452 723 283 431 
the ARP1 464 659 318 408 

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
 
 



 124

 
Table 80: Results of Method Consistency Test of Various Methods 

(Functional Code: 6) 
 

Method δ = 0.90 δ = 0.95 
Bayesian 23 (52.3%) 10 (45.5%) 

Frequency 21 (47.7%) 7 (31.8%) 
Rate 13 (29.5%) 3 (13.6%) 

the ARP1 18 (40.9%) 7 (31.8%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by methods in both periods; the percent in 
the parenthesis stands for the corresponding percentage. 
 
 
 

Table 81: Results of Total Ranking Differences Test of Various Methods 
(Functional Code: 6) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 2118 970 

Frequency 5040 2050 
Rate 6904 4380 

the ARP1 6900 2651 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
       
 
 

Table 82: Results of False Identification Test of Various Methods 
(Functional Code: 6) 

 
Method  δ = 0.90 δ = 0.95 

FN 24 (3.1%) 17 (2.0%) 
FP 24 (27.9%) 17 (40.5%) Bayesian 
FI 48 (5.5%) 34 (3.9%) 
FN 23 (2.9%) 17 (2.0%) 
FP 23 (26.7%) 17 (40.5%) Frequency 
FI 46 (5.3%) 34 (3.9%) 
FN 52 (6.6%) 31 (3.7%) 
FP 52 (60.5%) 31 (73.8%) Rate 
FI 104 (11.9%) 62 (7.1%) 
FN 31 (3.9%) 16 (1.9%) 
FP 31 (36.0%) 16 (38.1%) the ARP1 

FI 62 (7.1%) 32 (3.7%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
        2: The number means the number of false identifications; the percent in the parenthesis stands for the 
corresponding percentage. 
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Table 83: Results of False True Poisson Means Differences Test of Various Methods 
(Functional Code: 6) 

 
Method  δ = 0.90 δ = 0.95 

FN 91.8 57.4 
FP 61.2 76.4 Bayesian 
FI 153.0 133.8 
FN 71.7 43.0 
FP 60.8 67.4 Frequency 
FI 132.5 110.4 
FN 85.4 85.0 
FP 126.6 40.8 the ARP1 
FI 212.0 125.9 
FN 215.0 161.6 
FP 190.5 121.7 Rate 

FI 405.5 283.4 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 84: Similarity of Identification Results (δ = 0.90) of Various Methods 

(Functional Code: 7) 
 
 Bayesian Frequency Rate the ARP1 

Bayesian  54 (85.7%) 23 (36.5%) 54 (85.7%) 
Frequency 54 (85.7%)  32 (50.8%) 61 (98.4%) 

Rate 23 (36.5%) 32 (50.8%)  32 (50.8%) 
the ARP1 54 (85.7%) 61 (98.4%) 32 (50.8%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 90% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 85: Similarity of Identification Results (δ = 0.95) of Various Methods 
(Functional Code: 7) 

 
 Bayesian Frequency Rate the ARP1 

Bayesian  25 (78.1%) 6 (18.8%) 25 (78.1%) 
Frequency 25 (78.1%)  12 (37.5%) 32 (100%) 

Rate 6 (18.8%) 12 (38.7%)  12 (37.5%) 
the ARP1 25 (78.1%) 32 (100%) 12 (37.5%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 95% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 86: Results of Site Consistency Test of Various Methods 
(Functional Code: 7) 

 
δ = 0.90 δ = 0.95 

Method 2000 Crashes 2001-2002 
Crashes 

2000 Crashes 2001-2002 
Crashes 

Frequency 349 607 240 409 
Rate 225 326 126 165 

Bayesian 337 622 230 438 
the ARP1 349 602 240 409 

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 87: Results of Method Consistency Test of Various Methods 
(Functional Code: 7) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 34 (54.0%) 12 (37.5%) 

Frequency 29 (46.0%) 12 (37.5%) 
Rate 30 (47.6%) 13 (40.6%) 

the ARP1 29 (46.0%) 13 (40.6%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by methods in both periods; the percent in 
the parenthesis stands for the corresponding percentage. 
 
 
 

Table 88: Results of Total Ranking Differences Test of Various Methods 
(Functional Code: 7) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 5107 2054 

Frequency 10764 5016 
Rate 8979 5081 

the ARP1 8276 5246 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
       
 
 

Table 89: Results of False Identification Test of Various Methods 
(Functional Code: 7) 

 
Method  δ = 0.90 δ = 0.95 

FN 33 (2.9%) 21 (1.8%) 
FP 33 (26.6%) 21 (33.9%) Bayesian 
FI 66 (5.3%) 42 (3.3%) 
FN 35 (3.1%) 20 (1.7%) 
FP 35 (28.2%) 20 (32.3%) Frequency 
FI 35 (5.6%) 40 (3.2%) 
FN 81 (7.2%) 49 (4.1%) 
FP 81 (65.3%) 49 (79.0%) Rate 
FI 160 (12.9%) 98 (7.8%) 
FN 35 (3.1%) 19 (1.6%) 
FP 35 (28.2%) 19 (30.8%) the ARP1 

FI 35 (5.6%) 38 (3.0%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
        2: The number means the number of false identifications; the percent in the parenthesis stands for the 
corresponding percentage. 
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Table 90: Results of False True Poisson Means Differences Test of Various Methods 

(Functional Code: 7) 
 

Method  δ = 0.90 δ = 0.95 
FN 77.2 51.0 
FP 54.0 58.9 Bayesian 
FI 131.2 109.9 
FN 59.4 54.6 
FP 66.2 59.3 Frequency 
FI 125.6 113.9 
FN 70.0 61.3 
FP 72.0 73.5 the ARP1 
FI 142.0 134.8 
FN 252.4 186.4 
FP 139.6 146.4 Rate 

FI 392.0 332.8 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 91: Similarity of Identification Results (δ = 0.90) of Various Methods 

(Functional Code: 8) 
 
 Bayesian Frequency Rate the ARP1 

Bayesian  5(50%) 2 (20%) 5 (50%) 
Frequency 5(50%)  7 (70%) 10 (100%) 

Rate 2 (20%) 7 (70%)  7 (70%) 
the ARP1 5(50%) 10 (100%) 7 (70%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 90% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 92: Similarity of Identification Results (δ = 0.95) of Various Methods 
(Functional Code: 8) 

 
 Bayesian Frequency Rate the ARP1 

Bayesian  2 (40%) 0 (0%) 2 (40%) 
Frequency 2 (40%)  3 (60%) 5 (10%) 

Rate 0 (0%) 3(60%)  3 (60%) 
the ARP1 2 (40%) 5 (10%) 3 (60%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 95% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 93: Results of Site Consistency Test of Various Methods 
(Functional Code: 8) 

 
δ = 0.90 δ = 0.95 

Method 2000 Crashes 2001-2002 
Crashes 

2000 Crashes 2001-2002 
Crashes 

Frequency 10.5 8.9 6.5 4.9 
Rate 9.5 8.2 5.3 3.5 

Bayesian 8.8 12.8 4.9 6.9 
the ARP1 10.5 8.9 6.5 4.9 

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 94: Results of Method Consistency Test of Various Methods 
(Functional Code: 8) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 2 (20%) 1 (20%) 

Frequency 2 (20%) 1 (20%) 
Rate 3 (30%) 1 (20%) 

the ARP1 2 (20%) 0 (0%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
        2: The number means the number of locations identified by methods in both periods; the percent in 
the parenthesis stands for the corresponding percentage. 
 
 
 

Table 95: Results of Total Ranking Differences Test of Various Methods 
(Functional Code: 8) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 223 89 

Frequency 437 147 
Rate 475 274 

the ARP1 592 320 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
      
  
 

Table 96: Results of False Identification Test of Various Methods 
(Functional Code: 8) 

 
Method  δ = 0.90 δ = 0.95 

FN 9 (4.9%) 5 (2.6%) 
FP 9 (50.0%) 5 (62.5%) Bayesian 
FI 18 (9%) 10 (5%) 
FN 9 (4.9%) 4 (2.1%) 
FP 9 (50.0%) 4 (50%) Frequency 
FI 18 (9%) 8 (4%) 
FN 14 (7.7%) 7 (3.6%) 
FP 14 (77.8%) 49 (87.5%) Rate 
FI 28 (14%) 98 (7 %) 
FN 9 (4.9%) 5 (2.6%) 
FP 9 (50.0%) 5 (62.5%) the ARP1 

FI 18 (9%) 10 (5%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
        2: The number means the number of false identifications; the percent in the parenthesis stands for the 
corresponding percentage. 
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Table 97: Results of False True Poisson Means Differences Test of Various Methods 

(Functional Code: 8) 
 

Method  δ = 0.90 δ = 0.95 
FN 4.5 4.2 
FP 4.0 3.1 Bayesian 
FI 8.5 7.3 
FN 3.9 3.2 
FP 3.1 3.4 Frequency 
FI 7.0 6.6 
FN 4.3 3.4 
FP 5.0 4.8 the ARP1 
FI 9.3 8.2 
FN 11.7 8.2 
FP 4.9 5.9 Rate 

FI 16.6 14.1 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 98: Similarity of Identification Results (δ = 0.90) of Various Methods 

(Functional Code: 11) 
 
 Bayesian Frequency Rate the ARP1 

Bayesian  19 (90.5%) 13 (61.9%) 17 (80.9%) 
Frequency 19 (90.5%)  15 (71.4%) 19 (90.5%) 

Rate 13 (61.9%) 15 (71.4%)  16 (76.2%) 
the ARP1 17 (80.9%) 19 (90.5%) 16 (76.2%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 90% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 99: Similarity of Identification Results (δ = 0.95) of Various Methods 
(Functional Code: 11) 

 
 Bayesian Frequency Rate the ARP1 

Bayesian  11 (100%) 6 (54.5%) 10 (90.9%) 
Frequency 11 (100%)  6 (54.5%) 0 (0%) 

Rate 6 (54.5%) 6 (54.5%)  6 (54.5%) 
the ARP1 10 (90.9%) 0 (0%) 6 (54.5%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
         2: The number means the number of locations identified by both methods as upper 95% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 100: Results of Site Consistency Test of Various Methods 
(Functional Code: 11) 

 
δ = 0.90 δ = 0.95 

Method 2000 Crashes 2001-2002 
Crashes 

2000 Crashes 2001-2002 
Crashes 

Frequency 2774 6706 1868 4589 
Rate 2433 5606 1438 3505 

Bayesian 2758 6694 1868 4589 
the ARP1 1868 4589 1865 4837 

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 101: Results of Method Consistency Test of Various Methods 
(Functional Code: 11) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 17 (80.9%) 7 (63.6%) 

Frequency 15 (71.4%) 7 (63.6%) 
Rate 12 (57.2%) 8 (72.7%) 

the ARP1 15 (71.4%) 7 (63.6%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
         2: The number means the number of locations identified by methods in both periods; the percent in 
the parenthesis stands for the corresponding percentage. 
 
 
 

Table 102: Results of Total Ranking Differences Test of Various Methods 
(Functional Code: 11) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 99 30 

Frequency 112 39 
Rate 440 147 

the ARP1 143 65 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
   
     
 

Table 103: Results of False Identification Test of Various Methods 
(Functional Code: 11) 

 
Method  δ = 0.90 δ = 0.95 

FN 4 (1.1%) 4 (1.1%) 
FP 4 (10%) 4 (10%) Bayesian 
FI 8 (1.9%) 8 (1.9%) 
FN 6 (1.6%) 4 (1.1%) 
FP 6 (15%) 4 (10%) Frequency 
FI 12 (2.9%) 8 (1.9%) 
FN 17 (4.5%) 12 (3.0%) 
FP 17 (42.5%) 12 (60%) Rate 
FI 34 (8.2%) 24 (5.8 %) 
FN 9 (2.4%) 4 (1.1%) 
FP 9 (22.5%) 4 (10%) the ARP1 

FI 18 (4.3%) 8 (1.9%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
        2: The number means the number of false identifications; the percent in the parenthesis stands for the 
corresponding percentage. 
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Table 104: Results of False True Poisson Means Differences Test of Various 

Methods (Functional Code: 11) 
 

Method  δ = 0.90 δ = 0.95 
FN 27.2 158.6 
FP 44.1 133.6 Bayesian 
FI 71.3 292.2 
FN 95.1 128.6 
FP 83.1 184.2 Frequency 
FI 178.2 312.8 
FN 101.0 213.4 
FP 148.5 102.6 the ARP1 
FI 249.5 316.0 
FN 1402.9 1108.2 
FP 516.1 449.5 Rate 

FI 1919.0 1557.7 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 105: Similarity of Identification Results (δ = 0.90) of Various Methods 

(Functional Code: 12) 
 
 Bayesian Frequency Rate the ARP1 

Bayesian  15 (88.2%) 10 (58.8%) 15 (88.2%) 
Frequency 15 (88.2%)  10 (58.8%) 16 (94.1%) 

Rate 10 (58.8%) 10 (58.8%)  10 (58.8%) 
the ARP1 15 (88.2%) 16 (94.1%) 10 (58.8%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 90% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 106: Similarity of Identification Results (δ = 0.95) of Various Methods 
(Functional Code: 12) 

 
 Bayesian Frequency Rate the ARP1 

Bayesian  8 (88.9%) 4 (44.4%) 8 (88.9%) 
Frequency 8 (88.9%)  5 (55.6%) 9 (100%) 

Rate 4 (44.4%) 5 (55.6%)  5 (55.6%) 
the ARP1 8 (88.9%) 9 (100%) 5 (55.6%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 95% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 107: Results of Site Consistency Test of Various Methods 
(Functional Code: 12) 

 
δ = 0.90 δ = 0.95 

Method 2000 Crashes 2001-2002 
Crashes 

2000 Crashes 2001-2002 
Crashes 

Frequency 1352 3437 888 2337 
Rate 1064 2602 662 1840 

Bayesian 1337 3452 878 2353 
the ARP1 1352 3356 888 2337 

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 108: Results of Method Consistency Test of Various Methods 
(Functional Code: 12) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 12 (70.6%) 8 (88.9%) 

Frequency 12 (70.6%) 7 (77.8%) 
Rate 10 (58.8%) 7 (77.8%) 

the ARP1 11 (64.7%) 6 (66.7%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by methods in both periods; the percent in 
the parenthesis stands for the corresponding percentage. 
 
 
 

Table 109: Results of Total Ranking Differences Test of Various Methods 
(Functional Code: 12) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 122 29 

Frequency 135 30 
Rate 277 73 

the ARP1 236 37 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
       
 
 

Table 110: Results of False Identification Test of Various Methods 
(Functional Code: 12) 

 
Method  δ = 0.90 δ = 0.95 

FN 9 (3.0%) 1 (0.3%) 
FP 9 (28.1%) 1 (6.3%) Bayesian 
FI 18 (5.5%) 2 (0.6%) 
FN 5 (1.7%) 2 (0.6%) 
FP 5 (15.6%) 2 (12.5%) Frequency 
FI 10 (3.0%) 4(1.2%) 
FN 14 (4.7%) 11 (3.5%) 
FP 14 (43.8%) 11 (68.8%) Rate 
FI 28 (8.5%) 22 (6.7 %) 
FN 7 (2.3%) 4 (1.3%) 
FP 7 (21.9%) 4 (25%) the ARP1 

FI 14 (4.2%) 8 (2.4%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
        2: The number means the number of false identifications; the percent in the parenthesis stands for the 
corresponding percentage. 
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Table 111: Results of False True Poisson Means Differences Test of Various 

Methods (Functional Code: 12) 
 

Method  δ = 0.90 δ = 0.95 
FN 171.7 29.3 
FP 268.6 54.8 Bayesian 
FI 440.3 84.1 
FN 88.3 61.3 
FP 183.7 80.7 Frequency 
FI 272.0 142.0 
FN 114.3 87.5 
FP 173.5 102.0 the ARP1 
FI 287.9 189.5 
FN 622.7 428.6 
FP 272.4 274.4 Rate 

FI 895.1 703.0 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 112: Similarity of Identification Results (δ = 0.90) of Various Methods 

(Functional Code: 14) 
 
 Bayesian Frequency Rate the ARP1 

Bayesian  35 (81.4%) 20 (46.5%) 37 (86.0%) 
Frequency 35 (81.4%)  27 (62.8%) 40 (93.0%) 

Rate 20 (46.5%) 27 (62.8%)  24 (55.8%) 
the ARP1 37 (86.0%) 40 (93.0%) 24 (55.8%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 90% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 113: Similarity of Identification Results (δ = 0.95) of Various Methods 
(Functional Code: 14) 

 
 Bayesian Frequency Rate the ARP1 

Bayesian  18 (85.7%) 10 (47.6%) 19 (90.5%) 
Frequency 18 (85.7%)  13 (61.9%) 19 (90.5%) 

Rate 10 (47.6%) 13 (61.9%)  11 (52.4%) 
the ARP1 19 (90.5%) 19 (90.5%) 11 (52.4%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 95% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 114: Results of Site Consistency Test of Various Methods 
(Functional Code: 14) 

 
δ = 0.90 δ = 0.95 

Method 2000 Crashes 2001-2002 
Crashes 

2000 Crashes 2001-2002 
Crashes 

Frequency 2020 4896 1445 2833 
Rate 1731 3970 1160 1870 

Bayesian 1964 4727 1271 2863 
the ARP1 1214 4899 1434 2856 

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 115: Results of Method Consistency Test of Various Methods 
(Functional Code: 14) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 21 (48.9%) 8 (38.1%) 

Frequency 21 (48.9%) 7 (33.3%) 
Rate 17 (39.5%) 5 (23.8%) 

the ARP1 22 (51.2%) 8 (38.1%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by methods in both periods, the percent in 
the parenthesis stands for the corresponding percentage. 
 
 
 

Table 116: Results of Total Ranking Differences Test of Various Methods 
(Functional Code: 14) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 2296 2925 

Frequency 5030 1253 
Rate 5577 3492 

the ARP1 5899 3585 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
       
 
 

Table 117: Results of False Identification Test of Various Methods 
(Functional Code: 14) 

 
Method  δ = 0.90 δ = 0.95 

FN 25 (3.2%) 16 (2.0%) 
FP 25 (29.8%) 16 (40%) Bayesian 
FI 50 (5.8%) 32 (3.7%) 
FN 22 (2.8%) 14 (1.7%) 
FP 22 (26.2%) 14 (35%) Frequency 
FI 44 (5.1%) 28 (3.3%) 
FN 42 (5.4%) 24 (2.9%) 
FP 42 (50%) 24 (60%) Rate 
FI 84 (9.8%) 48 (5.6%) 
FN 21 (2.7%) 13 (1.6%) 
FP 21 (25%) 13 (32.5%) the ARP1 

FI 42 (4.9%) 26 (3.0%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
        2: The number means the number of false identifications; the percent in the parenthesis stands for the 
corresponding percentage. 
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Table 118: Results of False True Poisson Means Differences Test of Various 
Methods (Functional Code: 14) 

 
Method  δ = 0.90 δ = 0.95 

FN 533.2 575.3 
FP 570.9 609.1 Bayesian 
FI 1104.2 1184.4 
FN 482.5 360.9 
FP 601.5 529.1 Frequency 
FI 1084.0 890.0 
FN 383.8 479.9 
FP 524.8 570.3 the ARP1 
FI 908.6 1050.2 
FN 1010.7 851.7 
FP 897.1 920.5 Rate 

FI 1907.8 1772.2 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 119: Similarity of Identification Results (δ = 0.90) of Various Methods 

(Functional Code: 16) 
 
 Bayesian Frequency Rate the ARP1 
Bayesian  13 (81.3%) 7 (43.8%) 14 (87.5%) 
Frequency 13 (81.3%)  10 (62.5%) 13 (81.3%) 
Rate 7 (43.8%) 10 (62.5%)  7 (43.8%) 
the ARP1 14 (87.5%) 13 (81.3%) 7 (43.8%)  
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
          2: The number means the number of locations identified by both methods as upper 90% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 120: Similarity of Identification Results (δ = 0.95) of Various Methods 
(Functional Code: 16) 

 
 Bayesian Frequency Rate the ARP1 

Bayesian  8 (100%) 3 (37.5%) 8 (100%) 
Frequency 8 (100%)  3 (37.5%) 8 (100%) 

Rate 3 (37.5%) 3 (37.5%)  3 (37.5%) 
the ARP1 8 (100%) 8 (100%) 3 (37.5%)  

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
         2: The number means the number of locations identified by both methods as upper 95% hazardous 
locations; the percent in the parenthesis stands for the corresponding percentage. 
 
 
 

Table 121: Results of Site Consistency Test of Various Methods 
(Functional Code: 16) 

 
δ = 0.90 δ = 0.95 

Method 2000 Crashes 2001-2002 
Crashes 

2000 Crashes 2001-2002 
Crashes 

Frequency 395 1170 262 921 
Rate 313 935 180 294 

Bayesian 389 1246 262 921 
the ARP1 392 1275 262 921 

Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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Table 122: Results of Method Consistency Test of Various Methods 
(Functional Code: 16) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 9 (56.3%) 2 (25%) 

Frequency 7 (43.8%) 2 (25%) 
Rate 7 (43.8%) 1 (12.5%) 

the ARP1 8 (50%) 2 (25%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
         2: The number means the number of locations identified by methods in both periods; the percent in 
the parenthesis stands for the corresponding percentage. 
 
 
 

Table 123: Results of Total Ranking Differences Test of Various Methods 
(Functional Code: 16) 

 
Method δ = 0.90 δ = 0.95 
Bayesian 463 298 

Frequency 727 435 
Rate 1132 811 

the ARP1 651 450 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
       
 
 

Table 124: Results of False Identification Test of Various Methods 
(Functional Code: 16) 

 
Method  δ = 0.90 δ = 0.95 

FN 9 (3.0%) 7 (2.2%) 
FP 9 (30%) 7 (50%) Bayesian 
FI 18 (5.5%) 14 (4.3%) 
FN 9 (3.0%) 6 (1.9%) 
FP 9 (30%) 6 (42.9%) Frequency 
FI 18 (5.5%) 12 (3.7%) 
FN 18 (6.0%) 11 (3.5%) 
FP 18 (60%) 11 (78.6%) Rate 
FI 36 (11.0%) 22 (6.7%) 
FN 8 (2.7%) 7 (2.2%) 
FP 8 (26.7%) 7 (50%) the ARP1 

FI 16 (4.9%) 14 (4.3%) 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
        2: The number means the number of false identifications; the percent in the parenthesis stands for the 
corresponding percentage. 
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Table 125: Results of False True Poisson Means Differences Test of Various 

Methods (Functional Code: 16) 
 

Method  δ = 0.90 δ = 0.95 
FN 114.9 119.3 
FP 125.8 127.8 Bayesian 
FI 240.7 247.1 
FN 108.0 106.3 
FP 123.9 135.4 Frequency 
FI 231.9 241.7 
FN 115.6 111.5 
FP 132.9 127.9 the ARP1 
FI 248.5 239.4 
FN 244.2 173.9 
FP 177.9 154.3 Rate 

FI 422.1 328.2 
Note: 1: the ARP⎯Method of Accident Reduction Potential. 
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